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Facilitating Technology-based Mental Health Interventions with Mobile Virtual
Reality and Wearable Smartwatches
Use-Case Analyzing Heart Rate Variability during Slow-Breathing Relaxation Exercises

Abstract

Background: There is a gap in the accessibility to mental care services between low-
income and high-income countries. World Health Organization has encouraged the use
of electronic and mobile health technologies to promote self-care and extend coverage of
services. However, the solutions to deliver technology-based mental health therapies use
systems that are either expensive, large or require specialized personnel to operate them.

Aim: The thesis aims at validating to what extent is possible to develop an artifact
consisting on a physiological computing system for mental health only using mobile virtual
reality (VR) and wearable devices.

Methods: The six activities of Design-Science research methodology were used to develop
and evaluate the artifact. The construction uses requirements elicited from the analyzes
of the available devices and the use-case of slow-pace breathing exercises for relaxation.
For the evaluation, 11 volunteers participated in a protocol involving two different parts:
normal-paced and slow-paced breathing, PPG signal was captured through smartwatch and
processed to analyze HRV in real-time. The artifact was assessed technically by calculating
data losses and algorithm performance.

Results: The artifact can be downloaded online. The physiological computing system is
contained in three software applications developed in Tizen, Android, and Unity. During the
evaluation, some performance issues were detected related with real-time HRV calculation,
causing data losses and accuracy issues. The detected HRV between both breathing
frequencies were not statistically significant.

Conclusion: Technology-based mental health interventions can leverage from mobile
technology. Special endeavors are needed in terms of interoperability because data transfer
between different devices represents extra burden from the development side. Analysis of
physiological data in real-time is feasible, but special attention in computational demands
is mandatory to reduce latency and packet losses. The developed artifact can be used in
further research aiming at including physiological data into digital interactive applications.

Keywords: Physiological Computing, Mental Health, e-Health, Wearable, Smartwatch,
Virtual Reality, Photoplethysmography, Heart Rate Variability, PPG, HRV.
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Chapter 1

Introduction

1.1 Motivation
The current speed of breakthroughs in digital technology comprises the called Fourth
Industrial Revolution that changes how people, government and institutions interact [1].
The healthcare field is not oblivious to this disruption, particularly the mental healthcare
system, which is having difficulties to meet the challenges of a growing population and more
individuals suffering from mental conditions. It is estimated that, up until 2016, between
15%-20% of the world population had some type of mental health disorder, with anxiety
disorders being the most common condition with an estimated prevalence of 3.8% [2].
Furthermore, the World Health Organization (WHO), in a report of 2017, demonstrated
the existing large inequalities in terms of accessibility to mental health services between
high-income countries (HIC) and low-income countries (LIC) [3]. Some results of these
statistics show that the amount of outpatient facilities dedicated to mental health is 30 times
higher in HIC than LIC; the number of mental health workers, per 100.000 inhabitants,
goes from 72 in HIC to below 1 in LIC, and the number of adult outpatient mental care
visits, per 100.000 inhabitants, is 7.966 in HIC and 220 in LIC.

Looking to bridge this gap, the WHO has recommended in the Mental Health Action
Plan 2013-2020 [4], the “promotion of self-care, for instance, through the use of electronic
and mobile health technologies” as one of the approaches that would provide integrated
and responsive mental health care services in community-based settings.

Psychological treatments that rely less on specialized human resources are considered
feasible to be implemented in scale for communities with low access to healthcare
professionals, and hence with high rates of untreated cases. Compared to individualized
encounters, the interventions in scale are better in terms of coverage and accessibility for
the population, but still need to get more validation of effectiveness [5]. The WHO has
suggested specific psychological treatments that are more suitable to evolve from
expert-delivered interventions towards self-guided sessions. It includes traditional tools are
such as self-help books and audiovisual material, but also suggests “evidence-based
treatments like Cognitive-Behavioral Therapy adapted to brief, basic and
non-specialist-delivered versions” [5].

Cognitive-Behavioral Therapy (CBT) is a psychotherapy that is widely used in
psychology to treat anxiety disorders like phobias (e.g. fear of heights, flying, spiders,
social) and post-traumatic stress disorder (PTSD) for soldiers. In general, it is applied on
people that have been exposed to a traumatic event that involved threat or severe injury,
and that developed an abnormal emotional response in form of fear, vulnerability or terror.
The basic premise of this therapy is to encourage a personal examination of negative
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thoughts (cognitive part) that contribute to anxiety, and an analysis of how the body
reacts (behavioral part) in situations that trigger anxiety [6]. Therefore, the high
prevalence of anxiety disorders make CBT a promising target for technological therapies
that could counteract the insufficient capacity of mental health services to provide
face-to-face interventions [7].

The delivery of mental care has been trying to leverage from mobile technology as
early as 1990s, but only the rapid advancements of the last decade have paved the way to
develop low-cost, flexible, mobile solutions for tele-mental health that use smartphone as a
digital lifeline that puts a therapist in every pocket [8] [9].

One CBT that has benefited from technological development is the Exposure Therapy
complemented with Biofeedback exercises [6] [7]. Exposure therapy is a method used with
people suffering anxiety disorder and consist of exercises of imaginary or real-life exposure
while teaching deep relaxation and self-monitoring skills. The person is intentionally
induced to the circumstances that cause distress, following a systematic plan that gradually
endures the intensity of exposure until anxiousness abates [6] [10]. By augmenting it with
biofeedback exercises, the users are also connected to sensors that provide immediate
information about the physiological responses (e.g. heart rate, brain waves, muscular
reaction) that are activated when the user is exposed to the stressor. This additional
information raises awareness of what is happening inside their body, and the user can
control these signals voluntarily to promote self-regulation [11] [12].

The exposure therapy with biofeedback is particularly leveraging from the technological
advances in Virtual Reality (VR) and Wearable Devices. In the first place, VR is a
non-invasive technology that lets users experience a 3D computer-generated scenario and
interact with the artificial environment with a head-mounted display (HMD) providing
first-person presence; it means, the sensation of being located in the real place [13]. This
characteristic makes VR suitable to deliver exposure therapies in a safe and controlled
environment; where anxiety triggers can be presented in a measured, consistent and
progressive way [6]. Secondly, biofeedback implies the collection of body signals and hence
the use of electronic sensors. The breakthroughs in low energy wireless communication
and sensor miniaturization have produced a plethora of hardware called Wearable Devices
[14], incorporating enhanced capabilities to monitor signals in an affordable, reliable,
non-invasive and secure way [15]. Ultimately, complete systems for psychological
interventions might integrate VR headsets to support exposure therapy and
wearable devices to collect behavioral and physiological data for biofeedback.
This technological approach integration may back up the creation of new therapeutic tools
used to offer mental health assistance outside clinical or research settings, and taking
advantage from the available hardware technology that has surpassed some previously
existent barriers in terms of affordability and mobility [16] [17].

Emerging technologies come along with emerging research areas, and the interest
to design systems capable of merging and interpreting both psychological states and
physiological measures produced a research field called Physiological Computing. The
term describes a technological system that incorporates psychophysiological information
into its functionality, being psychophysiology the study of relations between measurements
of physiology and inferences about the states of the mind [18]. Physiological Computing
is considered an area potentially capable to revolutionize the field of Human-Computer
Interaction (HCI) because complements the technological systems with an additional layer
of awareness of the user-context, inferring the user specific emotions and cognition and
feeding back this data to generate customized and tailored interactions [19].

On the one hand, Physiological Computing Systems might be considered an umbrella
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term for those “smart” systems with autonomy to analyze user’s psychophysiology and
with adaptive capabilities. On the other hand, digital solutions to aid mental health would
involve the management of both psychological and physiological components. Consequently,
Physiological Computing emerges as a framework that can guide the development of
systems to deliver mental health care through self-guided interventions using exposure
therapy and biofeedback.

To sum up, anxiety disorders constitute a prevalent mental health disorder but there is
a gap between low-income and high-income communities to access to mental care services
[4] [5]. These increasingly widespread mental health conditions represent personal, social
and economic burdens [7]; and is in urgent need of simple solutions that extend coverage
to treat it. One of the interventions for anxiety disorders considered to offer complete
psychological assistance is the use of exposure therapy with biofeedback exercises [6], which
is progressively being deployed over e-health technology like smartphones, VR systems and
wearable devices; making it more scalable [7]. These systems have the ability to create
exposure with controlled conditions while capturing psychophysiological patterns of the
user [6] [14] [16]. The latter feature makes them highly related to the area of Physiological
Computing [19], which is an emerging research area that focuses on complementing
technological systems with an additional layer of intelligence that is appropriate to design
self-guided systems for mental health. The objective is to let computational systems process
psychophysiological information from the users in real-time, so it can adapt its functionality
accordingly, which can be compared to the adaptation principle used in delivering gradual
exposure therapies.

This master thesis is motivated by the contextual background described above. However,
it strictly falls within the area of Physiological Computing and relies on the latest research
in the area in form of books [20], special book chapters in HCI [21], and PhD theses
[22] [23]. Even though this master thesis is based on psychophysiology theory and use of
cutting-edge technologies, the innermost rationale of this work follows a personal conviction
that considers simple technology as a driving force to enhance life quality in communities
with less opportunities to thrive; in this case, moving one small step forward to solve the
lack of accessibility to mental health care.

1.2 Problem
Mobile technology has surpassed some previously existent barriers, becoming more relevant
to be used for self-guided mental health interventions; however, there are still hindrances
that need to be addressed. For instance, the rise of mobile technology was accompanied by
the appearance of thousands of apps that claimed to treat all kinds of mental disorders,
but the reality is that most of them have not been tested at all, as described thoroughly
in [9]. In exposure therapies, the consumer-oriented VR solutions reduced the cost of
the equipment and increased the performance and mobility, but there are still clinicians
that are reluctant about VR efficacy [16]. The biofeedback exercises count on a market
flooded with wearable sensors that might be able to replace the large and expensive used
in laboratory settings, but the amount of options makes it harder to assess which devices
hold strong evidence about the reliability of the measured physiological variables to allow
an implementation in out-of-the-lab settings [17] [24].

Considering that technology moves faster than science and politics regarding mental
health [8] [9] [25], a mobile-based approach that would allow the scalability of mental health
interventions is assumed to be on early-stages in research and suffering from technological
pain points.
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To verify this assumption, an analysis of the state-of-the-art in physiologically adaptable
systems in mental health was performed, details in section 2.3. The search resulted in a
wide variety of developed applications, basic deep breathing exercises with biofeedback
based on heart rate or brain signals, real-time modification of games based on arousal level,
or efficacy of mobile applications connected to commercial stress management devices.
Nevertheless, among the reviewed literature, only the project PhysioVR [26] was fully
relying on mobile technologies, yet it did not provide all the tools to get the physiological
information necessary to provide complete adaptive functionalities to the interventions.
Conversely, most of the presented solutions were incongruous with the recent technological
breakthroughs and incompatible to be translated into real-world, mainly because were
using computer-based systems, expensive physiological sensors and setups that represent a
challenge to replicate outside highly-controlled laboratory settings.

The overarching problem addressed by this research is the shortage of mobile
physiological computing systems for mental health care. Nevertheless, this thesis tackles a
specific intervention consisting on slow breathing exercises which aim at inducing
relaxation states and maximizing cardiac responses. Therefore, the main knowledge
gap addressed by this thesis is the lack of knowledge in how the physiological computing
systems should be designed and built over accessible mobile technology to assess their
effects on supporting mental well-being, while monitoring heart data to provide real-time
information about the user states and during self-guided relaxation exercises.

1.3 Aim and Objectives
The project aims at bridging the knowledge gap by implementing the five-layer model
of physiological computing system (defined in section 2.1.2) only using mobile-based
technology to encourage easy scalability of self-guided mental health interventions.

The validation of the feasibility of construction of the solution is performed in a specific
use-case scenario within the mental health therapies. The scenario consists on a guided
slow-paced breathing exercise, which is an adjunct technique to traditional mental health
interventions that maximizes the amplitude of Heart Rate Variability (HRV) in a person,
being HRV an index associated with overall emotional and physical wellbeing. The selected
use-case scenario provides enough contextual information to design, implement and evaluate
the full model of physiological computing.

In one end, the designed solution utilizes a wearable smartwatch to collect
photoplethysmography (PPG) signal from the user. On the other end, a mobile VR
application guides the slow-breathing exercises to encourage relaxation and high amplitude
of HRV signal. In the middle, several data analysis stages are built to close the loop of
information flow with signal processing, psychophysiological inference and system
adaptation.

An early evaluation will assess the capability of the mobile system to identify in real-
time the changes in HRV during a slow-paced breathing exercise. Although an adaptation
layer is implemented, the conducted evaluation of the system does not consider this stage
because first, it aims at validating the acquisition and validity of HRV as a measure for
relaxation to define the rules that would be used to adapt the system according to the user.
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Existing challenges in physiological computing systems [19] [21] lead to the following
research objectives:

• To implement signal processing algorithms to estimate HRV in real-time from PPG
time-series collected with a wearable smartwatch. (Data Science)
• To validate the detection of HRV changes in real-time under different breathing
conditions guided by a mobile-VR application. (Physiological Computing)
• To conduct an early evaluation of the feasibility of construction of the system in
supporting mental health interventions. (Health Informatics)

1.4 Relevance to Health Informatics
Health informatics is a field of knowledge that applies information and communication
technology systems on healthcare [27]. Hence, it is strongly related to the design of
socio-technical systems [28] that understand the complexity of the healthcare field and
provide technology that respond to the real needs of the user. Socio-technical systems
are closely tied to Human-Computer Interaction, which is the field concerned with the
development of interactive computing systems that are easy to learn, effective to use and
that provide enjoyable user experience [29].

The thesis belongs to the field of Physiological Computing, considered a part of of
Human-Computer Interaction, and that aims at designing socio-technical systems for
mental health care. Hence, the presented work is relevant to the research area of Health
Informatics.

1.5 Research Questions
Based upon the knowledge gap described in the problem and the aim of the project, the
research question of the thesis is:

To what extent can a physiological computing system be deployed only using wearable
smartwatches and mobile virtual reality, to support mental health interventions with
slow-paced breathing relaxation exercises and heart rate variability analysis?

The work of the thesis can answer some secondary research questions such as:

• What is a feasible technical architecture of a physiological computing system fully
integrated with mobile VR and wearable sensors?

• How can HRV be calculated in real-time from the heart rate signal to estimate the
user performance in a self-guided slow-paced breathing exercise?

• What effects in HRV are detectable with the mobile physiological system during
guided slow-paced breathing exercises?
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Chapter 2

Extended Background

2.1 Physiological Computing
Since this thesis is completely demarcated within the field of Physiological Computing,
it results compulsory to explain the most important elements of this research area. The
following sections describe its fundamentals, the generic model of a physiological computing
system, and existing issues.

Physiological Computing is a new paradigm of Human-Computer Interaction (HCI)
where the systems can: 1) take physiological activity of the user as an input source, 2)
analyze it in real-time, 3) estimate psychological context of the current user, and 4) adapt
parts of its functioning to generate customized and tailored interactions [19]. Currently,
the traditional HCI implies that technology communicates with the human users in an
asymmetrical way; it means, a digital system can offer to the user a lot of information
about its internal state while the computer remains essentially blind to the psychological
intentions and experience of the user. Now, the new approach using physiological computing
systems challenge the standard interaction, facilitating a symmetrical communication in
which the system is continuously monitoring the central nervous system, being aware of the
behavioral cues, psychological intentions and experience of the user [21]. This increased
autonomy and adaptive capability of the systems characterizes a new generation of “smart”
technology, capable to respond to a dynamic representation of the user, while moving from
a master-slave to a collaborative-symbiotic relationship [19].

2.1.1 Biocybernetic Loop

The biocybernetic loop is a conceptual model developed by Pope et al. in 1995 [30] and
considered the core component of all physiological computing systems. The initial
experiment consisted on a system where the level of automation of a task
(manual/automatic) was adapted in real-time based on the mental engagement of the user,
derived from the continuous monitoring of brain electrical activity. The biocybernetic loop
is derived from the cybernetic model used control theory within a closed-loop. An
electronic system measures, monitors, and controls a process by taking real-time
information from the output of the system; similarly, the biocybernetic loop measures
physiological information, monitor changes and controls system adaptations that are
timely and intuitive from the user’s perspective [19] [21].
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2.1.2 Generic Model

The goal and overall stages of a physiological computing system are mostly agreed; however,
it does not exist yet a standard framework that assist in designing and comparing different
approaches. To facilitate the understanding of the project, this work is outlined
using the “Five-Layer Model of Physiological Computing”, proposed in 2018 by
Kosunen on his PhD thesis [23]. The model is depicted in Figure 2.1, and builds upon
the initial ideas developed by previous researchers and proposes well-defined stages that
contain self-sustained problems that can be addressed separately.

Figure 2.1: Generic Model - Adaptation of the “Five-Layer model of Physiological
Computing” proposed by Kosunen in [23]. The original model uses stacked layers, here it
was adapted in a loop that resembles the actual flow of the information.

The first block deals with the raw physiological signals that have been acquired from
the sensors (such as heart, muscular, or brain activity), usually in form of time-series
and including algorithms for artifact rejection such as filtering to remove interferences.
Then, the next layer calculates metrics that are extracted from the raw signals to quantify
features from the physiological signals. Next, the indices layer deals with the conceptual
interpretation of the psychophysiology, it addresses the question of whether emotions
should be interpreted categorically, as specific emotions; or dimensionally, like valence
and arousal. The logic block decides how the indices are going to be used; essentially,
contains the biocybernetic loop and the way how the system will change to generate
the intelligent behavior. The last layer implements the actual physiological computing
application, utilizing the capabilities provided by the logic layer [23].

2.1.3 Types of Applications

The ability to transform psychophysiological data into signals that control the behavior of
digital systems can be used to develop applications in an extensive number of areas, very
often the purpose is either to promote performance efficiency or maximize pleasure with the
human-computer interfaces (also called hedonomics) [19]. However, within Physiological
Computing, the applications mostly fall into two groups depending on the type of response
that is provided by the adaption engine module of the logic block: biofeedback systems or
biocybernetic adaptation [31].

7



Biofeedback System

The biofeedback systems rely on the principle from control theory that states that “a
controller of a system can control a given variable if information about that variable is
made available to it” [31]. The physiological computing system can also be used to provide
biofeedback. In this case, the Logic block in the generic model does not contain a complex
set of rules, but it acts just as a bridge between the Metrics and the Application blocks.
Ultimately allowing the visualization of raw physiological information in a way that helps
users to raise awareness of their inner processes and increase the voluntary control over
them.

Biofeedback systems have been adopted to develop several applications. For instance,
a biofeedback application can be utilized in rehabilitation to teach people with physical
disabilities how to gain muscle control, by using as input signal the muscular information
collected through EMG. Another example might detect gaze movement through special
cameras to move the cursor on a screen. In videogames, let a user move an avatar
through training of specific brain activity patterns collected through EEG. In psychology,
biofeedback is a well-known exercise that supports the interventions to treat a wide range
of anxiety disorders, for example helping users to gain control over breathing cycles.

Biocybernetic Adaptive System

A biocybernetic adaptive system use the physiological information to directly change its
own functionality or appearance [31]. As opposed to biofeedback systems, the Logic block of
the model is intensively used to map the physiological inference into meaningful elements in
the system, comprising the most complete and “intelligent” type of physiological computing
systems.

Some examples are described to contextualize where these systems can be used in
simple contexts, and how they differ from the biofeedback systems. For instance, consider
a camera-based system that detects fatigue through time between eye-blinks, and help
users by increasing or decreasing the font size in the screen; or an application that detects
frustration through blood pressure and offer timely on-screen help; or a videogame that
adjusts game difficulty to maximize user’s engagement [31]. In all these examples, the
systems adapt to take the users to the desired states, but the users are never aware of the
actual values of the physiological signals; everything is handled by the system “behind the
scenes”.

2.1.4 Existing Issues

The state-of-the-art has already presented the main pitfalls that need to be handled when
deploying physiological computer systems [19] [21]. These hurdles were summarized and
grouped according to the block that is affected from the generic model in Figure 2.1.

Signals
Use sensors that maximize comfort and minimize intrusion, while maintaining high
fidelity of signal quality. Moreover, implement solutions that balance between
invasiveness and stationarity of the users. For example, camera-based systems are
non-invasive but require users to sit still; on the other hand, chest-straps allow
mobility but are invasive requiring skin contact.
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Metrics
Signal classification serves as the interface between human nervous system and a
repertoire of software responses, but one physiological signal can lead to the extraction
of several metrics, and some of them might differ in processing time. Hence the
importance of choosing metrics that are accurate and computationally fast to facilitate
real-time adaptation.

Indices
The relationship between physiological metrics and psychological meaning is complex,
a one-to-one relationship is ideal but is the rarest inference in real life. It is a
mistake to assume that physiology captures psychological states in a plug-and-play
fashion, thus several experimental tests under representative conditions are required
to establish the concurrent validity of the chosen physiological metrics.

Logic
Define the range of adaptive strategies that the system can utilize to represent the
state of the user. It goes from simple if-then rules or linear equations, to complex
machine learning approaches. The definition of frequency of adaptation is key. A
frequent adaptation can lead to large number of false alarm or misdiagnosis of the
psychological state of the user, resulting in a perceived low accuracy, low system
reliability and lack of intuitiveness from the user’s perspective.

Application
Define the purpose of the system, whether it is going to minimize risk, promote
pleasurable human-computer interaction, promote productivity or support emotional
wellbeing. The chosen display interfaces and the set of adaptive instructions equally
affect the accomplishment of the system’s purpose.

2.1.5 Main Research in Physiological Computing

Although detectable physiological signals have been studied since the creation of electrical
devices in the beginning of the 20th century, just the rise in sensor technology presented in
the last decades popularized the study of physiological computing systems.

An initial research agenda [31] was presented in 2004 by the Professor Stephen
Fairclough, who has been the main evangelizer of the topic. Then, in 2009 he presented
the core concepts and challenges in the seminal article “Fundamentals of Physiological
Computing” [19], mentioning a clear inspiration from the Biocybernetic Loop developed by
Pope et al. in 1995 [30]. In 2012, a report of the European Union about challenges in 21st
century bioengineering [32], stated that physiological computing would drive the creation
of intelligent technology, and claimed that “the approach of biocybernetic adaptation
deserves particular attention because it is expected to become the single most widespread
research topic in artificial intelligence”. Later, in 2014 a full issue was dedicated to
“Advances on Physiological Computing” [20] with meaningful applications that tackle the
challenges of blending physiology and technology. In 2017, Stephen Fairclough published a
chapter in a HCI book [21] giving an updated version of his seminal article, and
identifying the needs that are still remaining in the area. Finally, the most recent projects
undertaken in the field are PhD theses conducted in 2018, in Portugal based on exercise
promotion over older populations [22] and in Finland based on relaxation tasks [23],
proving the interdisciplinary broad range of applications that can be done within the area.
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2.2 Theoretical Framework

2.2.1 Foundations on Digital Signal Processing

The architecture to implement is related with the design and development of computational
systems that record physiological data, process them and provide real-time responses.

Real-Time Systems

A real-time system is defined as a “computational process that has to respond to internal or
external stimuli in determined periods of time” [33]. When a real-time system is composed
by several subsystems, each entity has its own local time that needs to be considered and
synchronized to the other parts of the distributed systems. These systems make use of
instantaneous and interval events that set the internal behavior of the system. Moreover, it
is composed by inputs and outputs that compose the dynamics of the interaction between
the environment and the system. A complete reference for real-time systems can be found
in [33].

Discrete Wavelet Denoising (DWT)

Discrete Wavelet Transform (DWT) is one mathematical transformation used to change a
signal from the time-domain to a time-frequency representation. Usually digital signals
are transformed to frequency domain using Fast-Fourier Transform to extract and analyze
additional features from them. However, this method gives frequency components but does
not offer specificity about the moment in time when the specific frequency was detected.
DWT uses a set of filters to provide information about the instant of occurrence of a
particular spectral component, both increasing time-resolution and allowing frequency
analysis. In this thesis, the DWT was used to build the real-time algorithm that calculates
features from the heart rate time-series. An extensive and friendly explanation about DWT
can be found in [34].

2.2.2 Foundations on Psychophysiology

The nervous system has two major divisions: the central nervous system which includes
the brain and spinal cord, and the peripheral nervous system which is further divided
into somatic and autonomic nervous system (ANS). The ANS consists on the sympathetic
branch which is responsible for “fight-or-flight” responses and the parasympathetic activity
that controls “rest-and-digest” behaviors [35].

Psychophysiology is the area of psychology that is concerned to the analysis of the
physiological responses of the ANS. Some of the research areas are the study of emotions
and response to stimuli via data collected through medical instruments that measure body
events from muscles, skin, brain or cardiovascular activity [36].

Physiology of the Heart

The heart is innervated by both branches of the ANS, the sympathetic connection increases
the heart rate and the parasympathetic branch decreases it. Studies have suggested that
the analysis of this variation in heart beats reflects the activity of the ANS [18]. The
heart rate information is usually collected in form of ECG signals, although other optical
techniques could result in a PPG waveform that also allows to extract valuable information
from heart functioning. The visual difference between both waveforms is shown in the
Figure 2.2.
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Figure 2.2: ECG vs PPG - Two types of heart rate signals.

Photoplethysmography (PPG)

PPG is a simple and low-cost optical technique that can be used to detect blood volume
changes in the microvascular bed of tissue. It can be measured at the skin surface with
non-invasive LED sensors that are compact, sensitive and have fast response times, hence
its wide usage in wearable devices. Extensive information about PPG is found in [37].

Heart Rate Variability (HRV)

One of the metrics that are widely used in psychophysiology is HRV, it is the fluctuation
in the time intervals between subsequent heart beats. A healthy heart is not a metronome
that pumps at the same frequency, but it follows a set of complex and non-linear behaviors
that are altered by different factors which represent changes in the ANS. To calculate HRV,
it is sufficient to record the peaks from the heart rate signal and get the time interval
between subsequent peaks, also known as peak-to-peak interval. The Figure 2.3 depicts
visually the process to calculate HRV from a set of peaks detected on a PPG signal.

Figure 2.3: PPG to HRV - Visual representation of how HRV is calculated from a PPG
signal.

HRV is used as an umbrella term that encompasses other metrics that describe how
the rhythm of the heart varies. However, more specific metrics are extracted from HRV to
examinate phenomena such as mental workload and stress response [18]. The metrics can
be calculated in time-domain or frequency-domain, as described in detail in [38], but only
three time-domain metrics are relevant for the thesis:
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SDRR Standard deviation of all peak-to-peak intervals. Calculated in ms. SDRRmeasures
how these intervals vary over time.

RMSSD Root mean square of successive differences between normal heart beats. RMSSD
is obtained by calculating each successive time difference between heart beats in ms.
Then each value is squared and the result is averaged before the square root of the
total is obtained. Reflects the beat-to-beat variance in HR.

CV Coefficient of Variation. Used as an standardized measure of dispersion. CV is
obtained as the ratio of the standard deviation to the mean, of the peak-to-peak
intervals.

2.2.3 Mental Health Interventions

The anxiety and stress disorders are characterized by powerful responses to traumatic
stressors. The most well-known are phobias, social anxiety, acute stress disorder, and
post-traumatic stress disorders. Several mechanisms have been designed to counteract the
increasing prevalence of mental health disorders in population. Typically, a set of options
like deep diaphragmatic breathing, taking a walk or talking with supportive people are
suggested for immediate stress and anxiety management. In cases with severe traumas, a
pharmacological approach can be taken, but the behavioral approach is widely extended
by means of Cognitive-Behavioral Therapy (CBT). These therapies involve a psychological
debriefing where the individuals are exposed to the traumatic events or encouraged to share
their experiences, then some generalized negative beliefs are identified and reevaluated to
set more realistic contexts and expectations [6]. Although there are several types of CBT,
the thesis is only associated to exposure therapy and biofeedback.

Prolonged Exposure Therapy

Exposure therapy is a technique that is used to help people overcome anxiety disorders by
habituation and emotional control. It consists on making the person confront the situation
that causes irrational fear, either through real-life or imaginary confrontation. The therapy
follows a systematic plan of repeated exposures, each sessions gradually increases the
intensity of the exposure until the person does not present mental and physical effects
when facing the stressor [10].

Biofeedback

Biofeedback is a technique used in psychology to promote self-regulation of physiological
responses by providing awareness of what is happening inside the body. By harnessing
the power of the brain, the user can control these signals voluntarily in order to produce
responses that are more helpful for physical, emotional and mental wellbeing [11]. It is
considered an exercise rather than a clinical treatment because the users actively participate
and reinforce the self-regulation skill through practice, similar to physical exercise [12].

To provide awareness of the physiological responses, a set of sensors are connected to
the body and then transformed into meaningful visual or auditory cues that promote the
changes in the user’s behavior. The efficacy of this technique has been scientifically proven
to treat mental conditions such as anxiety, stress, attention deficit hyperactivity disorder [12]
and physical complications like chronic pain, urinary incontinence, and rehabilitation [39];
mainly using measures from brain signals (EEG), muscular activity (EMG), electrodermal
activity (EDA) or face gesture analysis with cameras.
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2.2.4 Emerging Technologies in Healthcare

Virtual Reality (VR)

Virtual Reality (VR) is a non-invasive technology that creates a sense of presence in a
computer-generated environment. This is achieved through the use of a head-mounted
display (HMD) that covers the eyes of the participant with lenses that generate the
stereoscopic depth, giving a feeling of immersion in the simulated environment and allowing
the interaction through head tracking [13]. VR should not be confused with Augmented-
Reality (AR) or Mixed Reality (XR), which are similar technologies but utilize different
visualization techniques and other interactions with the computer-generated environment.

There are three main types of VR devices: high-end, standalone and mobile-based.
The high-end technology include devices that are capable to render realistic images,
handle complex interactions with external controllers and let the users walk in the virtual
spaces. This extended interactions imply a tethered connection to a computer with high
computational capabilities and graphic processing power. Next, the standalone devices
are untethered systems that contain displays and computational power similar to mobile
devices. The mobile-based are systems leverage from traditional mobile-phones to generate
the immersive content in an untethered fashion. This approach increases the portability of
the solutions but limits the quality of the rendered scenarios and the interactions within the
environments. Leading technological companies have recently released the next generation
of VR devices1, and in [25] contains a comprehensive description of existing VR systems
up to 2016.

From a technological perspective VR has existed during several decades. However, only
the latest advances regarding the creation of hardware with smaller size, slower latencies
and more computational power allowed the rebirth and hype of VR as a visualization
technology [13]. This technology has spread across different fields in academia and industry
with applications for scientific and data visualization, education, exercise, design, real
estate, travel, remote collaboration in industry among others [40]. In healthcare, several
research projects have been conducted based on VR systems, including applications aimed
at supporting surgical training for healthcare practitioners, building game-based interactive
systems for physical rehabilitation, or designing virtual environments to treat phobias,
anxiety or pain [41].

Clinical psychology has been trying to leverage from VR since early 1990s, especially
through the design of virtual simulations that help patients to cope with mental conditions
[16]. VR has now become the quintessential tool to deliver psychotherapies in form of
exposure therapy [10], with proven efficacy to treat phobias (e.g. spiders, heights, flying),
anxiety disorders and post-traumatic stress disorder [6].

Wearable Devices

The commercial options of technologies to monitor personal health is becoming ubiquitous
with the constant release of new bands, garments, smartwatches and other types of
miniaturized, portable and affordable sensors. The computing power that these devices
have reached, have allowed them to collect and process physical and physiological data
from the users to offer personalized and real-time feedback [24].

These type of sensors are known as wearables, and have become very popular in medical
research and industry due to their capability to monitor vital signs in a reliable and secure

1As of May 2019, the companies that are leading the development of VR technology are Oculus and
VIVE. Releasing mobile-based systems such as the Oculus Quest, standalone systems like the Oculus Go
and Vive Focus, and high-end products such as Oculus Rift S and Vive Index.

13

https://www.oculus.com/quest/
https://www.oculus.com/go/
https://www.vive.com/cn/product/vive-focus-en/
https://www.oculus.com/rift-s
https://store.steampowered.com/valveindex


way. Moreover, the nature of the utilized sensors encourages their usage among a wide
variety of scenarios and make their acquisition more affordable for healthcare institutions,
and more important, for patients [15]. It has been reviewed the promising effect of wearable
devices as physiological monitors that help in both diagnosis and ongoing treatments with
neurological, cardiovascular, pulmonary and mental conditions [14].

Smartwatches have been deemed as suitable to be used as safety monitors to detect
falls in elderly population, facilitate home-based rehabilitation with interactive systems,
assess treatment efficacy between outpatient visits, and for early-detection of disorders [14].
Furthermore, the vital signs collected such as HR and HRV have been used in anxiety and
stress management as biomarkers to detect.

According to market statistics2, the number of sold smartwatches is growing, being
considered the largest product segment of consumer wearable devices. This gives a hint
about the rapid adoption of these technologies in society, as well as its relevance as a
platform that can set the foundations to advance healthcare through the delivery of scalable
and customized services based on real-time acquisition of physiological data.

2.3 Related Work
As stated before in section 1.3, the main knowledge gap underlying this work is the lack of
physiological computing systems completely deployed over accessible mobile technology
that can assist mental health interventions. The knowledge gap was determined after
conducting a scoping literature review, which is thoroughly described and analyzed in the
following subsections.

2.3.1 Literature Search

Since the project intersects a variety of fields from physiology, psychology and computer
sciences, several searches were performed in three different bibliographic databases: PubMed,
IEEE Xplore and Springer Link. These three tools comprise an exhaustive library of peer-
reviewed publications tailored to the disciplines of interest and were considered sufficient
to get overall understanding of the state-of-the-art.

Research in physiological computing is relatively new, and it is not used as a
standardized term for the systems that fall within the field. Conversely, most of the
research projects that might be relevant to analyze are scattered within different research
fields like biofeedback, intelligent interaction, affective computing, or physiologically-driven
systems. As a consequence, because there are no meaning-bearing keywords which grant
access to all relevant literature, the searches were not performed using specific terms but
keeping in mind a question that addresses the problem to review: What computing
systems are utilized in research projects that involve physiologically controlled applications
for stress/anxiety management or relaxation exercises?

Multiple non-structured searches were used in the three databases using combination
of non-controlled vocabulary like: “biofeedback”, “physiological systems”, “wearable”,
“virtual reality”, “anxiety”, “relaxation”, “stress”, “mental health”. The search results were
filtered by year of publication because the interest relied on analyzing the use of the latest
technology. Moreover, the articles had to include in the title or abstract any hint that
indicated that the project covered physiologically-controlled systems for mental health.
After the exclusion of the irrelevant entries, a total of 21 publications were included for a
scientometric analysis.

2Online smartwatch unit sales worldwide from 2014 to 2018. Link.
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2.3.2 Literature Analysis

Comparison Criteria

The definition of the main research question is highly related to technical feasibility of
physiological computing systems over mobile technology; therefore, the literature review
was performed paying special attention to the technical architecture and devices utilized
to build the physiologically-driven systems that delivered the intervention in each project.

The analysis of the literature is summarized in the Table 2.1 using four groups. If a
research project has all the crosses in the columns with green background, it means that
fulfills the requirements of a physiological computing system with real-time adaptation
and fully mobile-based. Additionally, while analyzing the systems that were utilized in the
projects, an online search of the current market price of the devices was added to facilitate
an estimation of solution’s scalability based on affordability.

With the intent to facilitate the comparison between publications, the related work is
evaluated using the five-layer model of physiological computing explained in the section
2.1.2. Firstly, for the layer “1. Signals”, the systems were examined according to the
utilized devices to collect physiological data, whether they were unobtrusive accessible
wearables or not, including that the sensor was able to send data directly to mobile devices.
Secondly, the layers “2. Metrics & 3. Indices” were analyzed together, this choice was
made because usually signal processing tasks were executed in the same hardware system
that calculated psychological states, the Indices layer was always present in the projects.
Thirdly, the layer “4. Logic” determined whether the intervention was displaying back to
the user the raw physiological signal, like in traditional biofeedback; or the data was used
to provide any kind of adaptation in the system behavior through a biocybernetic loop.
Lastly, the layer “5. Application” that defines the way how the system shows information
to the user, was analyzed considering three groups: a) Mobile VR, the content is shown in
an immersive fashion using mobile technology; b) Desktop VR, the content uses immersive
headsets with high-resolution that require computers to be executed; and c) Non-VR, use
of traditional screens from mobile phones, computer or monitors.

Summary of the findings

The main finding is that, to the best of our knowledge, only one project (PhysioVR
[26]) implemented a technical architecture that is close to the requirements of a portable,
affordable, easily-scalable and using mobile-based technology with VR. However, the project
did not incorporate sufficient tools to extract features from the physiological signals that can
result meaningful for mental health projects. All the other projects were using architectures
that required laboratory settings or expensive, outdated or non-mobile technology.

The two groups used to classify the projects according to the Signals layer were enough
to get a glance about the portability of the physical setup to which the participants were
subjected. Those systems that included brain signals required more complicated technical
architectures, the cause is that their receiver applications are mostly adapted to desktop
computers and not to mobile phones. Related to the Metrics layer, several projects used
cardiovascular signal as a data source to provide biofeedback. The increased interest in
using this type of data might be explained because heart signals have the best relationship
between reliability of the signal and easiness to collect data. For instance, when the user
of a VR system moves, the heart signal is not strongly affected by noise components that
might modify the original data, being opposite to brain or muscular data which are highly
sensitive to the position of the electrodes, or to facial expression measurements that would
require the users to sit still during the interventions. From the Application block, the
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literature review shows that the VR devices used ten years ago presented much lower
technical specifications, for example the headsets had ten times lower field-of-view and
one quarter of the resolution of current devices. It reveals the early interest in unveiling
the potential of VR technology in psychology even when the hype was not started, and
supports the timeliness of the project to incorporate existing cutting-edge technologies in
the area.

About the individual findings, one study exposed the problem of lack of inherent
engagement in the normal relaxation therapies [42]; this is a pain point that can be
counteracted by using VR technology. Moreover, a short study stated that “the integration
of smartphone and mobile biofeedback in physiological and psychological markers of stress
illustrates the potential scalability of these types of interventions” [43] and two other studies
claimed as future work the inclusion of more advanced stress monitoring features based on
HRV indexes [44] [45]. These statements support the idea that the proposed mobile-based
physiological computing system might set the ground to develop efficient, low-cost, and
complete interventions; as well as encouraging future research to be conducted outside the
laboratory settings, during longer periods of time and using clinical population in their
real-life context. Finally, some research entities to highlight due to their relevance in the
reviewed topic are the journal “Applied Psychology and Biofeedback”, and the researchers
in the field of biocybernetic adaptation Parnandi and Gutierrez-Osuna.

Novelty of the thesis

Therefore, the novelty of this thesis is manifold. Based on the analysis of the table, there
are not many research projects that focus on the implementation of physiological computing
systems for mental health, and only one of them was found to have a similar scope than
the presented thesis. Hence the novelty of the thesis relies on the implementation of a
mobile-based system that collects heart rate information and calculates metrics that are
more complex than current provided physiological metrics, providing a framework for more
complete interventions under research settings and future in-situ deployment in population
needing accessible mental health treatments.

Additionally, the use of mobile-VR and smartwatches in this study is relevant because
these two technologies are new and affordable, with an increasing adoption by final users,
which facilitates the scalability of psychological procedures involving exposure therapies
and biofeedback.

Furthermore, the validation of a mobile-based architecture has the potential to drive
the change in the way how mental health services are delivered nowadays, integrating
additional source of information to conduct preventive or therapeutic interventions in a
self-guided manner for a population that is more tech-savvy, health conscious, receptive to
mobile, and willing to use these systems beyond office-based settings [8] [17].
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Table 2.1: Analysis of related work based on generic model of physiological computing.

Building Block from Generic Model 1. 2. & 3. 4. 5.
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[46] 2017 Virtual Sophrologist: The aim was to develop a VR neurofeedback relaxation training system.
A relaxing environment changed depending on the estimated meditation score. Measuring
EEG through Emotiv EPOC headset (U$800) and mobile-VR headset to visualize.

X X X X

[44] 2014 Positive Technology App: Aims at testing the efficacy of an application that uses wearables
for the self-management of psychological stress. Measuring HR from any commercial sensor
compatible with Bluetooth Smart protocol. iOS application for smartphone/tablet.

X X X X

[45] 2014 Chill-Out: An adaptive biofeedback game that teaches relaxation skills by monitoring breathing
rate of the user. Measuring HR and breathing rate with Zephyr BioHarness BT (U$700) and
EDA with FlexComp Infinity (U$6500). Mobile application running on Android 2.3.

X X X X

[47] 2017 Deep Breaths: Tool that allows users to experiment various respiratory pacing signals in order
to maximize relaxation. Measures PPG from a wristband Empatica E4 (U$1700) and runs on
iPod Touch.

X X X X

[48] 2008 Aims at integrating a portable biofeedack device into clinical practice, measuring the
effectiveness of RSA biofeedback devices as an adjunct to CBT. Used a commercial device
that estimated stress, and relaxation levels.

X X X X

[43] 2016 Aims at evaluating the efficacy of biofeedback stress management intervention with mobile
smartphone and gaming apps. Measuring EDA with Pip device (U$150) and HR with iHealth
pulseoximeter (U$80). The mobile games ran in an iPhone 4S.

X X X X

[49] 2005 Goal of the study is to document the efficacy of VR exposure therapy on cardiac response and
automatic processing of stimuli against arachnophobia. Measuring HRV with a CardioPro.
Visualization with I-Glass SVGA VR Headset (no longer available). The adaptation was
performed graduating the level difficulty, not automatically but adjusted by the therapist.

X X X X

[50] 2018 Examined the effectiveness of respiratory biofeedback in lowering arousal after stress. It
measured EEG through B-Alert X10 system and task runs on desktop-based Oculus Rift VR
headset.

X X X X
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Table 2.1 continued from previous page
Building Block from Generic Model 1. 2. & 3. 4. 5.
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[51] 2018 Emotional Labyrinth: Design and preliminary evaluation of a general-purpose architecture
for affective-driven VR applications in mental health. Measures ECG, EMG, respiration and
EDA through BiosignalsPlux (U$1000) and runs on desktop-based HTC Vive headset.

X X X X

[52] 2009 INTREPID: Proposes an improvement of existing treatments for generalized anxiety disorder
using biofeedback-enhanced VR system for relaxation and controlled-exposure. Measures EDA
and HR through NONiPOD integrated pulseoximeter (no longer available).

X X X X

[53] 2016 Proposes a system for Home-Based VR exposure therapy for patients with social phobia
through virtual health agents. Adapts phobic stressors automatically depending on patients’
anxiety levels. Measuring HR through Zephyr HxM device (U$700) and desktop VR system.

X X X X

[54] 2016 RelaWorld: Neuroadaptive VR meditation system. Measures EEG signals through QuickAmp
system and running the environment in desktop-based Oculus Rift VR headset.

X X X X

[55] 2016 VR-enhanced respiratory biofeedback system for patients suffering from physical symptoms
related to clinical conditions marked out by anxiety disorders. Measuring breathing through
Zephyr Bioharness 3 (U$700) and running a NeuroVR scenario in a laptop.

X X X X

[56] 2014 Interreality: Develop a technological protocol for management of psychological stress and
comparing it with a non-technological protocol for CBT. At-office measures include HR,
HRV, breathing rate with a custom system (U$2500) and desktop-based VR system VUZIX
Wrap 1200VR (U$2200), and at-home therapy measures with Empatica E3 (U$1000) with
smartphone.

X X X X

[57] 2018 BioPad: Framework to use off-the-shelf video games for stress management through slow-paced
breathing. Measures HRV and EDA through chest strap sensor Zephyr Bioharness 3 (U$700)
and game consoles with controllers to show the applications.

X X X X

[58] 2011 Aims at examining HRV biofeedback as a stand-alone intervention for reducing anxiety in
college students. Compares the biofeedback system HeartMath Freeze-Framer 2 (available in
2005) and emWave (available in 2007). The guided respiration was performed through videos
in computer.

X X X X
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Table 2.1 continued from previous page
Building Block from Generic Model 1. 2. & 3. 4. 5.
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[59] 2014 Aims at maintaining player’s arousal by modifying racing game difficulty in weather, steering
and speed. Measuring EDA through the wired system FlexComp Infinity (U$6500). Game
showed in an LCD monitor, and interaction with racing wheel.

X X X X

[42] 2018 Gaming away stress: Design, implementation and evaluation of three respiratory biofeedback
games. The sensor was the chest strap Zephyr BioHarness 3.0 (U$700) to monitor breathing
rate, connected via Bluetooth to an LG Nexus 4 Phone running Android OS 5.1, which ran
the three apps.

X X X X

[60] 2017 AmbuRun: Interaction with a VR ambulance game that adapted speed and difficulty based on
real-time assessment of frustration and excitement in the user, through neurofeedback. Used
Emotiv EPOC headset (U$800) to capture EEG, and FOVE VR headset (U$600) to visualize
the game.

X X X X

[61] 2017 Aims at comparing the effectiveness of two biofeedback mechanisms to promote acquisition of
deep breathing skills using a casual game. Compares explicit biofeedback with a version that
alters the internal parameters of the game. Measuring BR, HR through Zephyr BioHarness
BT (U$700), EDA through FlexComp Infinity (U$6500). The app was displayed in a Google
Nexus 5 phone.

X X X X

[26] 2016 PhysioVR: Open-source software to facilitate the integration of physiological signals measured
through wearable devices in mobile-VR applications. Implements an early evaluation with a
system that captures HR using a smartwatch and low-cost mobile VR headset.

X X X X

19



Chapter 3

Research Methodology

This chapter describes the research methodology and methods that frame the thesis. For
the sake of clarity, research methodology refers to the general theory of how research should
be undertaken; and research methods refer to the specific techniques and procedures used
to obtain and analyze data, such as questionnaires, observation, interviews, quantitative
and qualitative analysis techniques [62].

3.1 Selection of Research Methodology
The research question of the thesis is highly focused on technological systems and lean
more towards applied research than theoretical research. Therefore, it demands a research
methodology suitable to guide this type of work in a systematic way, with clear strategies
that frame the creation of knowledge around the discussed problem.

The considered quantitative research methodologies for the project were: Experimental,
Requirements Engineering, and Design Science. The experimental methodology in computer
science is highly based on the collection of data, but a part of the thesis involves the
construction of the system that performs data collection, and this part is not considered
on the methodology. On the other hand, requirements engineering is solely based on the
elicitation of needs that would dictate the functioning of the prototype, leaving aside the
scientific evaluation. Finally, design science was chosen as the research methodology to
follow because it comprises both stages, construction of the system and its evaluation.

3.2 Design Science Research Methodology (DSRM)
Design science is a paradigm that seeks to create innovations to define new ideas,
practices, and products through the analysis, design, implementation, and use of
information technologies artifacts with high relevance in real-world problems [63]. In the
methodology, the term “artifact” is a general word used to refer to a bundle of
elements packaged in a form of hardware or software, usually
technology-based solutions, aiming at producing results that are of real
interest in practice and not only theory-based.

According to the guidelines for design-science research [63], the artifacts are rarely
matured systems used in practice. On the contrary, these artifacts allow to acquire
knowledge to demonstrate feasibility of the design process, giving information about
whether the construction of a system could be effectively and efficiently accomplished.
Once feasibility is demonstrated, the arise of new artifacts can be performed by delivering
subsequent significant improvements in the product, process, or methods under construction.
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In the article describing the Design-Science Research Methodology (DSRM) [64], all the
conceptual principles and practice rules from the former publications were incorporated
into a process model, shown in the Table 3.1, that standardized the design-science process
with steps that make the solutions valid and valuable to be incorporated in research.

Table 3.1: Process Model of the Design-Science Research Methodology (DSRM)

Activity Name Description
1 Problem and

Motivation
Specification of the research problem and justification of
the value of the solution. To capture the complexity of a
problem, an atomization in subproblems might be useful.

2 Objectives of the
Solution

Analysis of how the new artifact would tackle the problem
better than existing ones, and list of system’s requirements.

3 Design and
Development

Definition of desired functionality, architecture to be used
and creation of the artifact, which can be any designed
object in which a research contribution is embedded in the
design.

4 Demonstration Proof that the artifact solves one or more instances of the
problem, it can be through experimentation, simulation,
case study, proof, among others.

5 Evaluation Analysis about how the artifact supports the solution of the
problem based on the objectives from activity 2, by using
quantifiable measures, observations or satisfaction surveys.

6 Communication Transfer the knowledge to researchers and relevant
professionals about the problem, its importance, artifact’s
utility, novelty, rigor of the design, and effectiveness.

3.3 Application of DSRM to the Research Problem
The aim of the research project describes the development of technology-based systems
with clear practicality in a well-defined real-life problem, characteristics that highly relate
to the definition of “artifact” presented in DSRM and makes it a suitable methodology to
follow in this thesis.

In general, the artifact that the thesis plan to design, implement, and evaluate is
a physiological computing system completely deployed over mobile-based technologies,
looking to provide easiness of scalability to support the design of further self-guided mental
health interventions. However, this description of the artifact is still abstract because the
spectrum of mobile-based devices is very wide and there are numerous different mental
health interventions. Thus, the description of the artifact to be built is narrowed down to
a more specific real-life context that proofs the feasibility of construction of the envisioned
system in one instance of the overall problem.

Consequently, the application of DSRM consists on the design of an artifact for a
specific scenario mental health intervention and uses a specific set of devices. Namely,
the artifact to build is a physiological computing system that stimulates slow-
paced breathing at a frequency of 0.1Hz guided by a mobile-VR application
and calculates HRV in real-time using heart rate data from a smartwatch. The
way how the first three activities of DSRM are utilized to develop the artifact are described
in the section 3.4, and the details of the last three activities of the DSRM are explained in
the section 3.5.
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3.4 Artifact Construction: Development of Mobile-Based
Physiological Computing System

This section describes how the first three activities of the DSRM led to the construction of
the artifact that is intended to solve the main research question.

3.4.1 Problem and Motivation of the Use-Case Scenario

The simplified reasoning behind the selection of the use-case scenario is that slow-paced
breathing exercises with monitoring of Heart Rate Variability Biofeedback (HRVB) are
deemed as a suitable technique to aid traditional psychotherapies in a mobile-based
approach. Moreover, it provides enough contextual information to test the feasibility of
construction of the five-layer model of a physiological computing system considering the
available resources of the project.

The following paragraphs explain how a slow-breathing exercise constitutes a first step
to solve the main knowledge gap of the thesis, as well as the motivation behind the selection
of this specific scenario.

Controlled Breathing in Mental Health

Controlled breathing is an ancient common practice among Eastern cultures originated
with spiritual purposes, but was popularized in the West in the 1960s due to an increasing
interest to be used as a complementary therapy for respiratory and circulatory diseases
[65]. Controlled breathing is linked to mental functions and hence is an essential element
in meditative practices like yoga or pranayama. The technique consists on exerting a direct
and conscious regulation of the parameters in respiration, such as frequency, deepness or
inspiration/respiration ratio [66].

The average breathing frequency for most of the people is between 0.15Hz and 0.4Hz,
which means that a person executes between 9 and 24 breaths per minute. Nevertheless,
research has suggested some benefits existing by slow paced breathing, especially at a
frequency of 0.1Hz, or 6 breaths per minute [65] [66] [67].

The documented effects of slow-paced breathing in healthy humans include benefits in
respiratory system such as increase in tidal volume, and efficiency in gas exchange; the
cardiovascular system is affected by an increase in the stroke volume, and sometimes a
decrease in mean blood pressure [65]. However, the most consistent discovery in slow-paced
breathing compared to spontaneous breathing is the cardiorespiratory coupling; where the
respiration rate, heart rate, and blood pressure are synchronized and cause a maximization
in the amplitude of the Heart Rate Variability (HRV) signal [68].

HRV, defined in detail in section 2.2.2, is a measure calculated as the time between
two subsequent heart beats. It is known that the heart does not beat in a periodic way
like a metronome even when the person is still, and HRV allows to analyze this variation
in heart speed. HRV tends to be in synchrony with the respiration cycle in a phenomenon
known as Respiratory Sinus Arrhythmia (RSA) [69], where heart rate increases during
inhalation and decreases during exhalation.

From the physiological standpoint, it is suggested that the HRV is controlled by
the baroreceptor reflex (baroreflex). The baroreflex is a mechanism that includes blood
pressure receptors in the aorta and carotid artery, responsible of monitoring blood pressure
fluctuations and respond to acute changes [65]. The receptors in the baroreflex are mediated
through the vagus nerve directed by the nucleus tractus solitarius in the brainstem,
which increases the heart rate through sympathetic activation, or decreases it through
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parasympathetic activation. Thus, HRV is often seen as a measure of the body’s ability
to change between parasympathetic and sympathetic autonomic control. Finally, since
the nucleus tractus solitarius that mediates HRV is also directly communicated with the
amygdala, which is the brain’s emotion controller. Several studies have been conducted to
show the effects of HRV for treating mental health conditions [68].

HRV is mainly related to mental health through exercises of HRV Biofeedback (HRVB);
also referred as respiratory biofeedback, heart coherence biofeedback, baroreflex biofeedback
or resonance frequency feedback. Traditional biofeedback, explained in section 2.1.3,
consists on displaying body information to the user to encourage voluntary control over
these signals. In one specific case of HRVB, the person is promoted to control HRV through
slow-paced breathing, creating a sinusoidal curve that reaches maximum amplitude when
the respiration frequency is 0.1Hz. Ultimately, HRV is often considered a measure of
physical and emotional resilience, and HRVB is regarded as a suitable technique to promote
self-regulation and treat anxiety, stress and depression [65] [66] [67]; but more rigorous
clinical trials are needed to determine its true size effect [68] [70].

As all the biofeedback modalities, HRVB seems a promising exercise to complement
validated treatments for mental health such as CBT, but it is not yet a commonly-used
practice due to the high cost and restricted mobility of the devices needed to setup the
system [70]. Some research projects have tried to aim this pitfall by developing physical
prototypes to provide HRVB. Among the found system architectures, the projects in [71]
and [72] designed shirts with special electrodes that measured heart and respiration signals,
but these setups were intrusive for the users and used computers to collect and process the
physiological data. The studies in [73] and [74] built wearable-based platforms, and were
using mobile phones instead of computers to process the data, but still used an elastic belt
to hold the sensors around the thorax or abdomen, resulting uncomfortable for the users.
The research in [75] performed a usability study in a completely mobile-based system
that used chest-strap to collect signals, and a videogame to guide the controlled-breathing
exercise. It highlighted the potential of game-based systems to motivating the users in the
task. Furthermore, none of the found prototypes for HRVB included mobile-VR technology
to guide the exercise, or smartwatches to collect heart rate signals, or a real-time adaptation
module that provides customized guidance, just as in the proposed artifact that follows
the five-layer generic model of physiological computing in Figure 2.1.

Finally, the main knowledge gap of the thesis is related with the lack of physiological
computing systems deployed over mobile technologies, but according to the described
context, this issue also encompasses the existing problems to spread out the use of HRVB
with slow-paced breathing exercises for mental health. Hence, considering the available
resources with heart rate sensor and mobile VR, this specific scenario becomes a suitable
option to benefit from the increasing improvements and affordability of wearable
technologies, through the artifact proposed in this work.

3.4.2 Objective of the Artifact

The solution was designed with the main purpose of validating whether a mobile-based
architecture can detect changes in HRV under two conditions, when the user is breathing
at normal pace and when the user is induced to slow-paced breathing at 0.1Hz. The results
of this initial validation can lead to subsequent experiments that assess effects of HRVB
and real-time adaptation from a medical perspective using mobile-based systems.
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Table 3.2: Available resources for the development of the artifact.

Hardware
Samsung Gear S9 1 Mobile phone used to run the applications, algorithms and communication

between entities in the physiological computing system. Associated with the
blocks METRICS and INDICES in the generic model.

Samsung Gear VR 2 Device used to transform the smartphone into a mobile Virtual Reality headset,
serving as a visualization platform for the virtual environment CalmPlace.

Samsung Gear Sport3 Smartwatch with a built-in heart rate monitor that records PPG signals from the
wrist of the user. Associated with the block SIGNALS in the generic model.

Software
CalmPlace4 Application developed for the mobile-VR headset. The relaxation experience

includes some meditation and respiration exercises intended to support mental
health but does not include any physiological sensor in the original version.
Associated with the block APPLICATION in the generic model.

PhysioVR [26] Early-stage open-source research project that facilitates the flow of information
along the five-layer model of physiological computing. Mainly associated with the
LOGIC block and utilized as the linker between captured physiological signals and
a mobile-VR application.

3.4.3 Design Requirements

The main aim of the thesis of analyzing feasibility of construction of the artifact; however, it
was necessary to define a set of technical requirements that enhance the system’s practicality
and take into account the available resources in terms of technological tools and time.

The first source of requirements was the list of existing challenges in each layer of
the generic model of physiological computing, discussed in section 2.1.4. An analysis
was performed to determine which of these caveats could be addressed with the available
hardware and software resources. The second source of requirements was the literature
review about the existing slow breathing projects that incorporated HRV biofeedback
techniques. Thus, the main requirements that comprise the functionalities of the artifact
were defined as follows:

a) The artifact must implement each of the five layers of the generic model.
b) The physiological sensor shall be comfortable allowing mobility of the user, minimizing

the intrusion of the sensors.
c) The acquired heart rate signal must maintain high fidelity and quality.
d) The processing of heart rate signal shall be computationally fast to facilitate a

real-time approach.
e) The Logic block shall be evaluated only when the concurrent validity of the metrics

is demonstrated. It implies that the HRV metric needs to be proven as a predictor of
the two respiration states and their corresponding psychological meanings.

f) The physiological computing system has a specific goal, and the adaptive instructions
should help the user in the accomplishment of the system’s purpose.

3.4.4 Available Resources

The available resources for included hardware and software tools, described in the Table
3.2, which are associated with the blocks of the generic model in Figure 2.1.

1Product website: Link
2Product website: Link
3Product website: Link
4Application website: Link. Mimerse is a Swedish startup that supported this thesis providing access to

the smartwatch, VR devices, and source code of the application CalmPlace.
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3.5 Artifact Evaluation: Research Study Design
This section outlines the elements that comprise the activities “Demonstration”, “Evaluation”
and “Communication” of the DSRM, leading to the overall validation of the artifact.

It is very important to highlight that, although the six building blocks of the physiological
computing system are developed in the artifact, the evaluation scenario omitted the Logic
block. According to the physiological computing foundations [19], the adaptation engine
has to be designed only when the validity of the physiological metrics are evaluated.
Hence, the artifact evaluation measured the ability to collect reliable data to detect a
psychophysiological variable without adaptation. The results of this study might lead to a
proper evaluation of the full biocybernetics loop, including the Logic block.

3.5.1 Motivation of the Evaluation Approach

According to the seminal paper about design-science research [63], an artifact can be
evaluated in terms of functionality, completeness, consistency, accuracy, usability,
performance or other attributes that might include mathematical evaluation. Moreover,
the artifact should be considered complete only when well-executed evaluation methods
proof that it fulfills the requirements and constraints of the problem that was meant to
solve [64].

Among the proposed design evaluation methods presented by Hevner et al. in [63], the
artifact was decided to be evaluated following the descriptive method in form of scenario,
which consist on “constructing detailed scenarios around the artifact to demonstrate its
utility” and is suitable to be used for “especially innovative artifacts for which other forms
of evaluation may not be feasible”.

It turns out important to recall that the main research question revolves around the
technical feasibility of implementation of the mobile-based architecture, hence the use-case
scenario that was specified to build the artifact is sufficient to demonstrate the practical
utility of the framework. Additionally, since the aim of the thesis is not to assess clinical
validation of the physiological system, the comparison with other systems that promote
slow-breathing exercises or induce relaxation is irrelevant.

Ultimately, the use-case scenario is also aimed at providing data to respond the
secondary research questions contemplated in the thesis, therefore the evaluation of the
artifact addresses the statistical significance test for specific sub-hypothesis described in
the data analysis.

3.5.2 Participants and Recruitment

The number of recruited participants for the study were 11 healthy volunteers, students
in Stockholm, and between 23-33 years old. The only exclusion criterion was whether
the volunteer presented any visual impairment that could not allow them to use the VR
system. For recruitment, it was chosen a non-probabilistic convenient sampling [62], which
is applicable for the research project because of the easiness of access to participants. The
collection of exploratory data was chosen due to time constraints to conduct the study,
but still able to gather enough data to answer the defined research questions.

3.5.3 Data Collection Tools

The intervention used the smartwatch device and mobile phone running the virtual
environment to record three main variables: 1) Raw PPG signal measured from the user
with the smartwatch, 2) HRV signal calculated in real-time by the system, and 3) a log of
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Table 3.3: Sequence of tasks in the study protocol.

N Task Description Duration
1 Informed Consent Ask for written informed consent from the

participant and explain the purpose of the study.
∼3min

2 Connection of
Devices

Connect the smartwatch and the VR headset to
the participant.

∼3min

3 PART 1:
Experiment
Baseline

The user is immersed in the CalmPlace
application, the person is breathing in a normal
pace. Record of PPG signal and real-time HRV
calculation.

270 sec

4 PART 2:
Experiment
Intervention

In the middle of the relaxation session, the
application CalmPlace shows a blue object in
the middle of the virtual scene that guides the
breathing exercise at a pace of 0.1Hz. Record of
PPG signal and real-time HRV calculation.

270 sec

5 Questionnaire Self-administered questionnaire asking for
demographic information, perceived level of
engagement, and perceived level of relaxation.

∼3min

6 Debriefing Removal of devices, explanation of the objective
of the study at each stage, and finalization.

∼2min

events reported by the signal processing module. The CalmPlace application recorded
timestamps that allowed the synchronization of data between the intervention sequence
and the smartwatch sensor. Additionally, a self-administered questionnaire, in Appendix B,
at the end of the intervention was used to retrieve basic demographic information, ask for
previous experience of the participant with VR, any previous cardiovascular complication,
perceived level of engagement, and perceived level of relaxation. All the study was
conducted by the author of the thesis who had direct interaction with every participant.

3.5.4 Intervention Description

The protocol followed a within-subject study design, meaning that there was only one
group where every participant was exposed to several stages of interventions [62]. The
procedure involved the measurement of physiological data during a predefined session in
CalmPlace divided into baseline and intervention. The complete protocol followed the
sequence described in the Table 3.3. The template of the informed consent is attached in
the Appendix A and the post-experiment questionnaire in Appendix B.

Initially the participant was placed in a quiet room without external noises that could
distract them from the virtual reality environment CalmPlace. The informed consent was
filled in, and the two parts of the experiment were explained, describing the changes that
were going to happen in the scenario and as shown in Figure 3.1. During the 540 seconds
of the experiment, the scenario displayed different visual and auditory cues that tried to
induce a relaxation state in the user, going from dusk with northern lights to vivid noon.
When the middle of the session was reached in the second 270, the blue object (rounded in
the orange box in the right side of the Figure 3.1) appeared to guide the breathing exercise
at 0.1Hz. The verbal instruction to the participant before the experiment was: “When the
blue object appears, try to follow the pattern breathing-in when the object is inflating, and
breathing-out when deflating”. The perceived difficulty to follow the pattern was assessed
in the questionnaire.
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Figure 3.1: Experiment Protocol - Two parts of the experiment in CalmPlace relaxation
experience. Left: Baseline with free breathing. Right: Intervention with slow-paced
breathing (guided by the blue object). Both images show the climante sequence going from
dusk to noon.

3.5.5 Data Processing and Analysis

The data processing and analysis to evaluate the artifact under the specific use-case scenario
was performed offline by the experimenter using the software R-project [76].

As described in section 4.1, each application of the architecture stores independent event
log files, making important to perform a data synchronization step. It is likely that the
three different systems in the architecture use different internal clocks, thus complicating
the identification of data segments that correspond to the two parts of the experiment.
The red lines of the timing diagram in the Figure 3.2, visually depicts the temporal offset
that needed to be corrected to do an adequate analysis of the data. The application 1
which runs on the smartwatch that collects the data samples, is started at point t0, then
the application 2 starts processing the data in the phone only when the log is created at
t1, and the application 3 that executes the intervention in VR starts when the session is
configured by the experimenter at t2. Hence, it was required to know the last sample that
was read at t2, t3 and t4 in order to find the subset of samples that belongs to the baseline
(yellow highlighted box) and intervention (blue highlighted box) of the experiment. For this
reason, the monotonic timestamp calculated from the application 1 in the smartwatch was
also propagated along the data workflow to be used as time reference, and the application 3
used it to write in an event log file the monotonic timestamp respective to the experiment
start, change between experiment stages, and experiment end.

The Figure 3.2 also shows the different performance variables to evaluate the
artifact; the dashed blue arrows represent the time window in which each variable was
calculated. First, the total number of recorded samples (NT ) in each application was stored
to validate the need of time synchronization,. The number of samples recorded during each
part of the experiment, baseline (NB) and intervention (NI), were used to calculate packet
losses along the architecture workflow.

Using the data collected in the application 2, the performance of the algorithm for
real-time HRV calculation was measured based on the proportion (p) of signal segments in
which PPG peaks could be detected, respecting to the total number of signal segments
that were processed. Moreover, the peak-to-peak time was calculated to create the array
with the final HRV waves during both experiment baseline with normal breathing (HRV B)
and during experiment intervention with guided breathing at 0.1Hz (HRV I).
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Figure 3.2: Data Processing and Analysis - Timing Diagram showing the time offset
between systems in the architecture, and time windows for each calculated variable. The
left axis represents the possible state of each system.
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At the end, the brief qualitative analysis contained comments about detected issues
in the system functioning during the intervention to check if all the requirements were
fulfilled, and to point out any technical limitations that need to be reviewed for future
experiments that intend to use the artifact.

Statistical Analysis

As described in the motivation of the use-case in section 3.4.1, the changes in HRV
during normal breathing (baseline) are presumed to be lower than the changes in HRV
during slow-paced controlled breathing (intervention). For this reason, the differences
of standard deviation of HRV (SD), RMSSD and coefficient of variation (CV) between
baseline (µB) and intervention (µI) were calculated for each subject. Consequently, the
null and alternative hypotheses are defined as follows:

H0 : µB ≥ µI H1 : µB < µI

The data analysis requires the use of a non-parametric statistics because the sample
size is small. The Wilcoxon signed-rank test was chosen besides other non-parametric
tests because the data are collected from the same participant, thus generating dependent
samples [62].

The statistic of the Wilcoxon signed-rank test (W ) is computed as the smallest sum of
ranks. Then, it is compared to the critical value (Wcritical) corresponding to the one-tailed
test, with level of significance α = 5% and according to the sample size. The null hypothesis
is rejected if the |W | ≤Wcritical.

3.5.6 Ethical Considerations

The research project addresses the ethical issues related to conduct the experiment, data
collection and reporting. The recorded data are handled under strict confidentiality to
present the results and does not allow identification of the participants. The smartwatch
utilized in the intervention does not produce physical harm to the user. The VR technology
can produce side effects such as motion sickness, headaches or dizziness; these consequences
only happen to some users, and the effects will be minimized through constant supervision
from the experimenter and will be warned at the beginning of the experiment. The virtual
environment used to guide the intervention is a relaxation experiences and does not contain
elements that may induce negative emotions like fear, stress or anxiety. All the participants
sign off a written informed consent before the study, it contains the aim of the project,
description of the protocol, health considerations, and the possibility to withdraw at any
time during the study.

3.5.7 Communication Plan

The results and the design of the system are communicated in the present thesis and
are intended to be published as a scientific article in a conference related with health
informatics, physiological computing, or data science during the second semester of 2019.
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Chapter 4

Results

The results are divided in two subsections corresponding to the steps described in the
research methodology. The first one describes the artifact construction, considering the
elements in section 3.4, and the second part responds to the evaluation methodology in
section 3.5. The developed artifact is publicly available to be downloaded online.

4.1 Artifact Construction: Development of Mobile-Based
Physiological Computing System

The overall goal of the artifact is to allow real-time use of physiological signals in virtual
reality applications for mental health. In this initial use-case, aiming at detecting changes
in HRV during slow-breathing at a frequency of 0.1Hz. The system architecture was
designed based on the use of the available resources and technical feasibility to transmit
the physiological data throughout the whole pipeline.

Figure 4.1: Implemented Architecture - Artifact Architecture of the Physiological
Computing System using the smartwatch sensor, PhysioVR and CalmPlace to promote
physiologically adaptable exercises for slow breathing.

The Figure 4.1 shows the technical aspects of the implemented physiological computing
system, which is an extension of the conceptual five-layer model depicted in Figure 2.1.
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These five-layers are developed in the architecture using three software applications that
exchange information between themselves in real-time. Each of them is represented in the
diagram as a colored block that contains the specific tasks running on each of them.

4.1.1 App 1: PPG Recorder

The first application is responsible for acquiring the physiological signals from the users
and send it to the mobile phone, corresponding to the SIGNALS block of the five-layers
model in the Figure 2.1. The utilized device is the smartwatch Samsung Gear Sport which
contains a heart rate monitor that records photoplethysmography signal (PPG), described
in section 2.2.2. Since the manufacturer does not provide a native application to collect the
raw PPG signal, which is needed to execute real-time signal processing; then a customized
program was developed using C language and the IDE Tizen Studio [77]. The result of
the application is shown in the image Figure 4.2. Note that the designed application can
collect either PPG or HR by tapping the checkbox in the interface, but for the scope of
the thesis only the former is relevant to calculate HRV.

Figure 4.2: App 1. PPG Recorder - User interface of the smartwatch application that
records either PPG data or HR data, and sends it to the mobile phone.

The main functions of the smartwatch application are recording data from the sensor
and broadcast the measure value to the application running in the mobile phone. However,
two engineering problems related to these functions were encountered and solved using
scientific articles and software development tools.

The first challenge to be addressed was the definition of the sampling frequency that
would guarantee the reliability of the time series representing the PPG signal. On the one
hand, if the sampling frequency was very low, it could omit valuable information needed
to calculate the HRV from the user. On the other hand, if the sampling frequency was
too high, it would affect the duration of the device’s battery without providing additional
information. After researching in the area, the work of Choi and Shin [78] validated that
the minimum sampling frequency to extract reliable HRV from wearable devices was 20Hz.
However, after initial tests that did not show significant battery drains, the chosen sampling
frequency for the application was 50Hz to increase time resolution of the peak detector.
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The second challenge was related with the communication between the wearable and
the mobile phone, the chosen workaround was to use the proprietary Samsung Accessory
Protocol (SAP) which allows send data over Bluetooth between Android mobile devices
and Samsung wearables. Besides been sent through Bluetooth, each sample was also
formatted, timestamped and recorded in local log files in the smartwatch to facilitate data
synchronization between the acquisition module and the processing module, as well as
making easier offline processing of the data.

4.1.2 App 2: PhysioSense

The second application is responsible of receiving the physiological data sent via Bluetooth
by the smartphone and estimate the psychophysiological inference to be used in the
adaptation engine, these tasks correspond to the METRICS and INDICES blocks of the
five-layers model in the Figure 2.1.

The mobile phone utilized was the Samsung Galaxy S9 running Android operating
system. PhysioSense is part of the PhysioVR framework developed by Muñoz et al.
[26]. The original application was augmented with two main features: 1) compatibility
with Samsung smartwatches, and 2) more important, the addition of a module that
processes physiological signals in real-time to extract more features from the signals, which
could provide more meaningful information for applications aiming at using physiological
adaptation. The application was developed using Java language and the IDE Android
Studio [79]. The result of the application is shown in the image Figure 4.3, the left side
shows the original user interface, and the right side displays the extended version with
compatibility to new set of devices, acquisition control, and real-time information of the
received data.

Figure 4.3: App 2. PhysioSense - User interface of the application PhysioSense. Left:
Original version from paper in [26]. Right: Extended version with the thesis’ work.
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The application was provided with a receiver of the SAP protocol to collect the incoming
data via Bluetooth from the connected smartwatch. Then, the data are buffered in a time
series of the PPG signal to detect peaks on it and to calculate time interval between peaks
to build the HRV signal.

The signal processing workflow is based on the pseudo-algorithm proposed by Bhowmik
et al.[80], which contains the mathematical steps necessary to estimate HRV from PPG
signal collected through the smartwatch. The original paper evaluated the performance
of the algorithm in an offline setting, meaning that the parameters were fine-tuned after
the acquisition to maximize the peak detection in their dataset. However, this represented
a new challenge for the designed physiological system because it was meant to work in
real-time. The original pseudo-algorithm was re-implemented in Java and included in the
PhysioSense Android application, enabling real-time HRV calculation. The evaluation of
the system is mostly based on the assessment of the performance of this algorithm.

Figure 4.4: HRV Calculation - Activity diagram of the algorithm to calculate HRV in
real-time from PPG data. Based on algorithm described in[80].

The activity diagram of the Figure 4.4 depicts the implemented algorithm. PhysioSense
serves as a bridge by taking every message read via the SAP receiver and forwarding it
through UDP to reach the visualization environment in VR. Additionally, it controls the
creation of log files between different recording sessions. When a user starts a new session,
the corresponding folders are setup to log all the incoming data and the results of the
real-time HRV calculator.

The decisions that were taken to transform the pseudo-algorithm that calculates
HRV into real-time processing affect several stages in the signal processing workflow. The
original pseudo-algorithm[80] proposed five stages: 1)Signal denoising with Discrete Wavelet
Transform (DWT), 2) trend removal with average filtering, 3) signal split in segments, 4)
peak search with autocorrelation function, and 5) interpolation of peaks. However, the
last stage was not included in the implementation utilized in PhysioSense. The reasoning
behind this decision was that a set of interpolated peaks in the invalid segments would
create fake peaks that alter the HRV that is intended to be measured, the final choice was
to omit the segments where no peaks were found during the real-time processing to avoid
false positives.
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The output of the four stages used to calculate HRV in real-time in Java was evaluated
offline using an R-script that visualized the peak detection algorithm. The input for the
validation was a 20 seconds test signal that was recorded with the smartwatch on the
author of the thesis. This time series was used to fine-tune the parameters that could
lead to a better peak detection, and ultimately a better HRV in real-time. The Figure 4.5
shows the original recorded signal (left), the result after the four stages (center), and the
mapping of the detected peaks back into the original recorded signal. The parameters used
to detect the peaks in this sample signal were set via trial-and-error and finally deployed
on the PhysioSense Android application. The process shown in this image represent the
steps that the HRV algorithm would perform in real-time with the received PPG data.

Figure 4.5: Example Peak Detector - Result of real-time peak detector in a test signal
to fine-tune processing parameters. Left: Original signal. Center: Processed signal and
peak detector. Right: Mapping of peaks in original signal.

Most of the parameters suggested by the original pseudo-algorithm were used in the
final version of the HRV detector. However, there were some changes in the DWT and the
addition of some parameters concerning the real-time processing. These values were set as
follows:

• Signal buffer = 1024 samples
• Number of DWT decompositions = 5
• Window overlap = 224 samples

The signal buffer is the amount of data that is going to be collected by the system
before running the HRV calculation, starting from the DWT. As described in the section
2.2.1, the DWT facilitates time-frequency analysis through consecutive decomposition of
the signal. The mathematical procedure to decompose the signal in frequency components
implies that after each decomposition the signal is subsampled by 2 to increase resolution
in time. Thus, the algorithm is meant to be computationally faster when the number of
samples is a power of 2. As a result, the chosen buffer size was 1024 samples.

The size of the signal buffer could have allowed up to 10 decompositions, but according
to the conditions specified in the original article, the necessary number of decompositions
to denoise the PPG signal were 7 to filter frequencies lower than 0.3Hz. However, when
applied on the test signal the low frequency components were not filtered adequately, and
after some validations the final chosen number of decompositions was 5. The breakdown
of the decomposition process is presented in the Figure 4.6, it shows how the 32 samples
corresponding to the Coefficients of Approximation L5 represent the frequency information
from 0Hz to 0.78125Hz. Then, these 32 samples were set to zero to filter the signal and the
inverse DWT was applied to reconstruct the original signal without the baseline component.
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After this reconstruction and the trend removal, the peaks could be successfully detected
as shown in the Figure 4.7.

Figure 4.6: DWT - Breakdown of the Sub-band Coding Algorithm used signal
decomposition performed by the Discrete Wavelet Transform during HRV calculation

The real-time nature of the algorithm implies that a set of consecutive signal blocks are
defined to process the acquisition of new data. Given that the size of the buffer was set to
1024 samples, the sampling frequency is 50Hz, and supposing that the buffer is completely
emptied after each HRV calculation; then the algorithm would be activated approximately
every 20.5 seconds. However, in the Figure 4.7 can be visualized that the borders of the
reconstructed signal contained high values that might be part of a peak but that cannot
be determined due to the signal split. To counteract this effect, the real-time processing of
the signal is performed using overlapping windows, causing the first calculation around
20.5 seconds from the start of the session, and the subsequent calculations approximately
every 16 seconds. With this approach, a segment of data is used to preprocess the signal,
but the peaks are only detected in a subset of the segment, keeping some samples in the
buffer to be used in the next calculation.

Considering that the original pseudo-algorithm recommended the split of the signal in
segments of 4 seconds, meaning 200 samples, it was decided that the 1024 samples were
used to execute the four stages of signal processing, but only the middle 800 samples were
going to be used for peak detection and HRV calculation. It resulted in data buffers that
contained four segments to detect peaks and kept a subset of the last 224 samples to be
used in the next HRV calculation.

As an example, the output of the peak detection for HRV in two subsequent segments
is shown in the Figure 4.8. The blue line represents the original signal, the green line is

35



Figure 4.7: Peak Detector - Result of the peak detector algorithm for HRV calculation,
applied on a test signal.

the processed signal, and the two vertical dashed black lines delimitate the sections where
the peak detection was performed. Note that in the first segment the first 112 samples the
peak calculation is not done, and this chunk is never processed. In the second segment, the
first 112 samples already contain the peaks that were detected from the previous execution,
but this is still included in the signal processing to avoid the problem in the edges that
was previously described. This same process is executed every time the buffer is full and
until the application is stopped or a new session is started.

Figure 4.8: Peak Detector with Overlapped Windows - Result of peak detector in
two subsequent segments with overlapping windows.

The last part of the algorithm is related with communication and data logging. A local
file that is created per session stores the result of the processed signal and the calculated
HRV. The latter value is also sent through the UDP port 1111 to be read by another
application running on the same Android device, in this case, the VR application CalmPlace
that would react to HRV changes.
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4.1.3 App 3: CalmPlace

The third application that is part of the architecture is the virtual reality environment for
relaxation CalmPlace, this software oversees the reception of physiological information to
set the events and behaviors that are going to respond to specific conditions of the signal,
and it is part of the LOGIC and APPLICATION blocks of the five-layers model in the
Figure 2.1.

The application runs on the same mobile phone than the application PhysioSense, and
they communicate via UDP. The module that handle the physiological signals in the virtual
environment was developed using C# and the Unity game engine[81]. Unity is a game
development framework that has increasingly been used in the field of serious games to
design interactive applications for physical and mental health interventions[82][83], thus
the compatibility of the artifact with this tool is key to facilitate the scale the use of
physiological signals in future interactive solutions for health.

In the virtual environment, the module that controls the reaction towards physiological
data has the appearance shown in the Figure 4.9. There are certain parameters that can
be set regarding the execution of the adaptation rules. First, before any adaptation is
done in the CalmPlace scenario, a baseline is calculated during a time that is easily set
by the user at the beginning of the therapy, with the options of 5, 15, 30, 60 and 120
seconds, by default is 30 seconds. Then, the calculation interval is the period in which
the adaptation rule is going to be triggered after the baseline, configurable in 5, 10, 15
or 20 seconds, by default is 15 seconds. Two types of adaptation are available depending
on which physiological variable is desired to be used as a controller, either increase HR or
maximize HRV. When the adaptation goal is to minimize HR, the average HR information
is collected in the baseline and every calculation interval; otherwise is the amplitude of the
HRV signal which is collected. At the end, when the timeout for a new adaptation is set,
the physiological variable collected during the calculation interval is compared to the value
in the baseline and clamped in a linear model from 0 to 1; where 0 means very far from
the goal, and 1 that the adaptation goal has been reached. As an example, in the virtual
reality experience the adaptation rule controlled the time of the day, going from dusk to
noon.

Nevertheless, it is important to recall that, even though both HR and HRV signals were
made available, the current work is primarily interested in adaptation using HRV due to
its significance in mental health therapies. Moreover, although the adaptation rules
were implemented, the evaluation of the artifact was not using the adaptation
system during the intervention. This decision responds to the design requirements
and recommended steps in the development of physiological computing systems, where the
first step is to assess the reliability of the physiological metrics before assessing the effects
of the whole biocybernetics adaptation in helping the user to reach the goal[19].

4.2 Artifact Evaluation: HRV during Slow-Paced Breathing
Exercise

Regarding the analysis from the defined requirements in section 3.4.3, indicates that
requirements a, b, and f are fulfilled with the current implementation. The requirements c
and d concerning signal fidelity and fast computation need further exploration according
to the explanations from the subsequent sections, and the artifact is prepared to validate
the requirement e that indicates that the logic module shall be tested in the future after
signal validity is proven.
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Figure 4.9: App 3. CalmPlace - User interface of the panel included in CalmPlace to
control the responses to the physiological signals received from PhysioSense.

According to the research study design, the evaluation is performed to identify whether
the artifact can properly measure, transmit and analyze PPG data to identify changes
in the HRV amplitude between normal breathing exercises and breathing at resonance
frequency of 0.1Hz guided through VR.

4.2.1 Demographic Results

A total of 11 volunteers were part of the experiment, age between 23 and 32 years old
(27± 3.24), and five male and six female participants. 10 participants reported previous
experience with VR systems and nobody reported any previous cardiovascular problems
during the past 5 years that could affect results in heart data.

4.2.2 Questionnaire Results

The customized questionnaire (Appendix B) used a 5-point Likert scale to assess
understanding of the instructions, perceived level of engagement with the virtual reality
environment, and perceived most relaxing intervention during the experiment. The
distribution of the answers is presented in the Figure 4.10.

All participants reported a clear understanding of the given instructions for both parts
of the experiment. The second question intended to measure perceived level of engagement
with the virtual environment, all the participants reported positive level of engagement
and mental blockade of external sounds or triggers. No negative answers were reported
regarding difficulties to follow the pattern object that guided the respiration at 0.1Hz. The
comparison about perceived relaxation level between two parts reported a level of relaxation
of 3.45± 1.04 during normal breathing and 3.27± 1.19 during slow-breathing. Finally, one
participant reported “little dizziness comparable to motion sickness” but completed the
whole experiment.

4.2.3 Artifact Functioning

This subsection contains the technical evaluation of the system as described in the
methodology to process and analyze the data in section 3.5.5.
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Figure 4.10: Questionnaire Answers - Diverging stacked bar chart summarizing the
results from the questionnaire administered post-experiment.

From the telecommunication standpoint, the objective to measure the number of
packets per stage was threefold: 1) Validate need of time synchronization, 2) Evaluate the
effectiveness of the SAP protocol and UDP protocol in transmitting the physiological data
in real-time, from the smartwatch to the virtual environment; and 3) Detecting performance
and stability issues from the proposed architecture. The Table 4.1 summarizes the values
of these variables per participant and per application.

Time Synchronization

The comparison of the total number of recorded samples showed that, for all the sessions:
NT 1 > NT 2 > NT 3; validating the necessity to make time synchronization of the different
datasets because the length of the log files was different in each system.

The application 3 contained an event log system with timestamps that were intended to
facilitate time synchronization for post-analysis. However, due to an undetected software
bug, this file was not created in 5 out of the 11 experimental sessions. In these cases, a
workaround was used to calculate the timestamps that would allow to split the signal
into the two corresponding parts of the experiment. However, the log file that with
physiological data was created successfully in all cases, and contained the data received in
the experiment’s duration. Thus, the start of the experiment baseline (Part 1) was set to
the timestamp of the first logged data sample (tb), the start of the experiment intervention
(Part 2) was set to the timestamp corresponding to tb + 270 seconds, and the end of the
session was set to the timestamp tb + 540 seconds. The validation of the workaround in
sessions without correputed data resulted in a difference of about 60ms, considered an
acceptable error to continue with the analysis.

Packet Loss throughout Data Workflow

Given the different transmitters and receivers used in the architecture, the analysis of
packet loss provided insights about the performance of the system in handling real-time
information at the specified sampling frequencies and computational demands from the
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Table 4.1: Summary of the data collected during the experiment, grouped per participant
and per application.

App 1: PPG
Recorder

App 2:
PhysioSense

App3:
CalmPlace

ID NT 1 NB1 NI1 NT 2 NB2 NI2 NT 3 NB2 NI3

1 230941 10289 6552 21245 10289 5284 8325 5427 2895
2 28042 12599 10543 26457 12599 9399 11764 6844 4920
3 32348 12601 12601 32348 12601 12601 14010 6744 6947
4 30424 10745 12562 14486 6392 7669 14486 6392 7669
5 20173 10760 3414 17600 10760 2196 6978 5800 1176
6 24487 12599 5869 22251 12599 4725 9140 6746 2394
7 31389 12600 12600 30296 12600 12085 13182 6783 6399
8 23880 10750 8098 22233 10750 6963 9428 5712 3714
9 17883 10732 2823 16551 10732 1636 6392 5518 872
10 14677 9773 1 14677 9773 1 93 92 1
11 26725 10622 10471 25476 10622 9325 10391 5501 4887

algorithms and visualization techniques. Later, the three sources of data in the systems were
synchronized to consider only the time window corresponding to the experimental session;
meaning that the total packet loss was comparing the sum of NB +NI per participant and
per application, as shown in Figure 4.11.

Analyzing the data from the 11 participants, the packet loss in the Bluetooth link
between the PPG recorder in the smartwatch and PhysioSense in the mobile phone was
8.1%±10.9%; between PhysioSense and the VR environment CalmPlace was 47.3%±22.2%,
and the total packet loss in the physiological computing system from end-to-end was 53.3%±
15.6%. However, as can be seen in the Figure 4.11, the two observations that are drawn
in red lines had a clearly differentiable behavior. These two observations were
considered outliers from the calculation and only the remaining 9 observations
were finally processed, reducing the dispersion in packet losses with 5.5%±2.9% between
PPG recorder and PhysioSense, 46.9 ± 0.8% between PhysioSense and CalmPlace, and
49.7%± 2% from end-to-end.

System Stability Issues

The two outlier observations drawn with red color in the Figure 4.11 match with the
experimental sessions that presented special conditions.

First, the uppermost red line corresponds to a session in which PhysioSense was not
properly setup by the experimenter, causing the physiological data to be stored but not
processed in real-time with the HRV calculation. This observation was the only observation
that did not present packet loss between PhysioSense and CalmPlace, providing insights
about the impact of the algorithm execution had in the data throughput.

On the other hand, the lowermost red line corresponds to a session in which the
PPG Recorder in the smartwatch stopped recording data before the baseline, resulting in
small number of total recorded samples and incomplete HRV data to compare algorithm
performance.

In addition, themain technical issue of the whole physiological system was the
stability of the application PhysioSense, which was always running as an background
application in Android. It was stopped in the middle of the experiment in 9 out of the 11
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Figure 4.11: Packet Loss - Parallel plot with number of received messages along
physiological system stages per participant.

sessions, affecting the data collection and calculation of HRV. According to the messages
of the mobile phone, the operating system detected that the battery was being drained by
a background application and forced the end of this process while the virtual environment
was in execution. The Figure 4.12 depicts the time when PhysioSense was active for each
experimental session; the first dashed line indicates the change in the experiment between
baseline and intervention, and the second line shows the expected end of the experiment.
The bar plot indicates that only two participants could complete the whole experiment
with PhysioSense running in the background, but one of these corresponds to the session
in which the algorithm for HRV calculation was not properly setup; resulting in only one
session that was finished without inconveniences.

4.2.4 Algorithm for Real-Time HRV Calculation

From the 11 participants, the analysis of performance of the algorithm for real-time HRV
calculation only considered 9 observations, the two outliers that were dismissed from this
analysis held the anonymous identification codes 4 and 10.

The Table 4.2 summarizes the results related with the algorithm for real-time HRV
processing. The first subheading shows the results of the implemented peak detector
described in the section 4.1.2, applied over the whole array of data captured by PhysioSense
for each user. The second subheading describes the analysis of the originally captured HRV
signal split into the baseline and the intervention durations. The rest of the table shows
the signal percentage that was affected by post-processing of HRV signal and the features
extracted from it.
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Table 4.2: Performance of the algorithm for real-time HRV calculation in the application PhysioSense. Excluding outliers with indexes
4 and 10.

Peak Detection Features from Originally
Calculated HRV
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Processed HRV
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1 105 83 79.0 1028.0 1632.8 1004.0 1749.6 8.29 5.17 731.2 0.106 127.8 749.40 150.23 2.141 0.175 0.200
2 131 113 86.3 975.5 1178.3 866.8 1440.9 4.69 3.74 824.3 9.015 191.1 680.94 192.65 4.463 0.232 0.283
3 161 142 88.2 947.8 1282.0 831.5 795.3 7.02 6.77 764.9 6.837 169.0 793.91 145.89 22.836 0.221 0.184
5 87 80 92.0 758.7 602.3 687.0 101.5 6.58 0.00 708.8 0.000 126.3 686.99 101.48 6.323 0.178 0.148
6 110 91 82.7 850.5 1322.0 697.6 153.7 5.97 3.91 644.9 4.842 162.1 675.18 111.64 3.771 0.251 0.165
7 150 122 81.3 1089.4 1629.7 831.1 1017.9 5.24 3.72 838.7 16.413 164.8 730.89 204.12 0.388 0.197 0.279
8 110 104 94.5 876.5 548.2 774.4 229.7 6.46 7.87 798.4 1.325 94.0 752.51 141.18 16.021 0.118 0.188
9 82 66 80.5 920.1 1365.2 1289.1 2137.7 5.42 0.00 709.2 4.207 167.8 792.43 302.30 26.284 0.237 0.381
11 126 103 81.7 539.2 1135.4 637.6 257.9 6.58 5.21 475.4 48.437 157.6 613.99 184.88 11.495 0.331 0.301
Avg 118 100 85.14 887.3 1188.4 846.6 876.0 6.25 4.04 721.8 10.131 151.2 719.58 170.49 10.414 0.216 0.237
µ: Mean. σ: Standard Deviation - SP : Number of processed segments in PPG signal during the experiment. SV : Number of processed segments with valid
peaks to calculate HRV. S[%]: Proportion of signal segments where PPG peaks were detected. HRV [msec]: Heart rate variability, time between two successive
peaks, calculated separately during baseline (HRV B) and intervention (HRV I). P [%]: Proportion of samples from original HRV that were affected after the
post-processing of the signal of the baseline (PB) and intervention (PI). µ(HRV ) and σ(HRV ): Mean and Standard Deviation of HRV during experiment
baseline (HRV B) and intervention (HRV I). RMSSD: Root mean square of the mean of the squared differences in time between successive peaks. CV :
Coefficient of Variation.
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Figure 4.12: PhysioSense Time - Duration of the experiment, per participant, before
PhysioSense was closed by the operating system.

The normal heart rate range is 40-150BPM, even under slow-breathing exercises,
therefore the valid time range between consecutive peaks should be between 1500-400ms.
However, the calculated HRV signal was presenting values exceeding this range and had to
be post-processed.

Figure 4.13: Post-Processing HRV - Example of one HRV signal before (top) and after
(bottom) processing the outlier values.

Two reasons were detected as the causes of big peak-to-peak times. First, the algorithm
for real-time HRV peak detection splits the signal in data chunks of four seconds but
some segments were not returning valid peaks, causing the time difference between two
consecutive peaks being in the order of several seconds. This was a flaw in the design of
the system’s architecture, caused by the decision of skip the step of peak interpolation in
the PhysioSense implementation, such as described in 4.1.2. Second, when the algorithm
collected the 1024 samples in the buffer to execute the HRV calculation, the system could
not read samples at 50Hz because the working thread was busy during the data analysis,
causing that some PPG signal peaks were omitted.

43



The issue with HRV outliers is depicted in the Figure 4.13 with the example of one
participant’s data, the blue line (top) represents the original recorded data with samples
that cross the valid range. The post-processing algorithm consisted on three stages: 1)
Clamping the window in the range 400-1500ms, 2) Using moving windows of 10% of
the signal length with 50% overlap to detect the values that were outside 2.5 standard
deviations, and 3) assign to these positions the previous valid value to generate a difference
between peaks of 0ms. Result of the post-processing is shown in the green line (bottom) in
Figure 4.13.

It was necessary to filter out the outliers that could have affected the calculation of
dispersion metrics and get a signal that represented better the real behavior of HRV during
the experiment. As an example to show the dispersion before and after the processing of
HRV, the coefficient of variation (CV) was calculated per participant and the results are
displayed in the Figure 4.14. The coefficient of variation shows the relationship between the
standard deviation and the mean value of the signal. The bars show that the variability of
the HRV signal was considerably reduced, just after processing between 3%-8% of the data
that were outliers, according to PB and PI in the Table 4.2, and increasing the resolution
to detect changes for the final statistical test.

Figure 4.14: Post-processing results - Change in variability before and after processing
outliers in HRV signal, per participant.

4.2.5 Comparison of HRV between Normal and Slow-Paced Breathing

The goal is to compare the experiment’s baseline during normal breathing and the
experiment’s intervention during slow-paced breathing. The evaluation checks whether the
PPG data collected with the smartwatch and the HRV calculation algorithm allow to find
a statistically significant difference among the two conditions. For this purpose, the
metrics Coefficient of Variation (CV), RMSSD and Standard Deviation (SD) were used,
based on the Table 4.2 and summarized in the boxplot of the Figure 4.15.

The critical value for one-tailed Wilcoxon signed-ranked test, level of significance
α = 5%, and sample size N = 9 is Wcritical = 8. The calculated W statistics for each
variable were: 15 for CV, 20 for RMSSD and 17 for SD. Since all of them are higher than
the Wcritical, then there is not enough evidence to reject the null hypothesis that HRV
features during normal breathing are lower or equal than HRV features during slow-paced
breathing, using the data recorded with the developed artifact.
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Figure 4.15: Statistical Test - Box plots showing the difference in the HRV features
between baseline and intervention. Slight HRV increase is perceived in during slow-breathing
intervention, but the difference is not statistically significant.
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Chapter 5

Discussion and Conclusion

5.1 Main Findings
The aim of the thesis was to implement the Five-Layer model of physiological computing
systems using a mobile-based approach to facilitate the development of technology-based
therapies in research and medical settings. The knowledge gap that was addressed is the
lack of computing systems that make easier the scalability of mental health interventions
without requiring wired setups or bulky devices to collect physiological data.

The major finding of this thesis is related with the proven technical feasibility of
construction of the proposed system based on available wearable health monitors and
mobile devices. The Five-Layer model of Physiological Computing [23], showed in the
Figure 2.1, was set as the reference for the architecture. The first part of the results
presented the design and development of the architecture with three software applications
that comprise the five blocks of the model. The second part was an early evaluation, which
analyzed the performance of the system in terms of packet loss during data transmission,
real-time processing of physiological data, and possible adaptation strategies. In general,
the results showed an acceptable performance, indicating that the implemented system
might be considered as a technical example in the use of interactive and cutting-edge
technologies to support mental health interventions in a mass scale. Nevertheless, additional
research from the technical and medical perspective is required.

The contribution of the thesis compared to the previous studies in the field is mainly the
use of real-time metrics from physiological signals in computational systems, specifically the
capability to use HRV features from smartwatch signals. These data extend the spectrum
of metrics that can be used by a system to understand the users’ psychophysiology. Due
to its relationship with parasympathetic and sympathetic activity in the brain, HRV also
turns out to be a relevant metric to be associated with specific aspects of mental health
and be further studied by using the proposed architecture. Additionally, according to the
analysis of technologies described in the section 2.3, similar research projects on mental
health were using either wired sensors, computers to process the data in real-time, or were
not using mobile VR to deliver the interventions. Conversely, the presented architecture
leverages from the use of wearable devices to collect physiological data, mobile phones to
perform real-time processing, and use of mobile VR; thus enhancing the portability and
scalability of these setup for projects aiming at conducting further research with HRV over
mental health interventions.
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5.2 Considerations from Artifact Construction
The technical implementation is heavily based on the previous study PhysioVR [26].
However, compatibility with a new type of smartwatches was added, associated with the
SIGNALS block of the generic model; and a module that performs additional analysis
from the PPG signal by calculating HRV features, linked to the block METRICS. HRV
features are more associated to biofeedback techniques and mental health interventions
than normal heart rate values, such as it was provided by the first version of PhysioVR.
Finally, the new spectrum of metrics benefits the psychophysiological inference, linked to
the block INDICES, that could be estimated from the user.

Even though the construction of the physiological computing system was seen as
feasible, some technical elements need to be addressed. Initially, the interoperability for
data transmission between peer technologies is still a challenge. When trying to scale up
the PhysioVR (running Android OS) with compatibility for new type of smartwatches
(running Tizen OS), the different operating systems between the wearables and PhysioVR
implied different programming languages and development environments, demanding extra
workload from the development side. This burden will exist for every new device that
is intended to be incorporated as a source of physiological data, but this initial effort is
counteracted afterwards by the increase in system’s portability. A standard that defines
for transmission of physiological data in real-time over Bluetooth networks could solve this
hindrance.

Concerning ethical and legal issues, the solutions that promote use of technology to
bridge the existing gaps in healthcare face different challenges regarding privacy, accessibility
and free informed consent [84]. The artifact that was built is not exempted from these
issues because the collection of the physiological data using digital health sensors is sensitive
to be transferred to other devices and be accessed by more people, hence the importance of
anonymity when collecting the data. From the ethical standpoint, the nature of the project
aims at increasing scalability of the technology, which is socially positive because it seeks
to grant access to technology-based health services to those communities that cannot have
them. But, simultaneously, it might foster reduction of human contact between medical
users and patients, eventually leading to patient’s isolation and risks of psychological
complications caused by technology flaws or misuse.

5.3 Considerations from Artifact Evaluation
The evaluation did not include the adaptation because, as recommended by physiological
computing seminal articles, it is required a validation of the metrics in inferring psychological
states in the user before enabling the automatic biocybernetic adaptation mode [19].

The administered questionnaire resulted in positive acceptance in terms of engagement.
The perceived relaxation was reported higher during the baseline in spontaneous breathing
than during the slow-breathing. The reason might be associated with the required sustained
attention to follow the breathing pattern, whereas the first part did not have a specific
mental task but just enjoying the environment. In order to measure the perceived relaxation
level in a more homogeneous way with the artifact, it is recommended to conduct the new
protocol showing the breathing object at two different respiration frequencies. In this way,
since both scenarios would require similar mental workload, the bias that was induced by
the guiding breathing pattern might be reduced.

The log files recorded in the three different applications were fundamental to perform
a reliable analysis post-intervention, without these data the time synchronization could

47



not have been executed, demonstrating the importance of this stage in its functioning as a
real-time system. However, although a workaround was found for the error in which log
data was not properly stored in CalmPlace for some sessions, it proved vulnerabilities in
terms of stability that need to be addressed from the technical perspective.

The degree of packet loss along the architecture provides insights about the
computational intensity required to handle the data acquisition, signal processing and
rendering of virtual reality environment. The biggest contribution for packet loss was the
algorithm for HRV calculation that was running in PhysioSense, which was corroborated
with the data of the participant in which the algorithm was not activated and did not
report packet loss.

The algorithm for real-time HRV calculation is the major bottleneck in the data
workflow. Actions from the development standpoint are required to reduce its impact in
the overall performance of the application, aiming at alleviating CPU usage to avoid that
the operating system closes PhysioSense from running in the background. First, one of
the recommendations is to reduce the acquisition sampling frequency from 50Hz to 20Hz,
which still follows the valid ranges found by Choi et al. [78]. The choice of using a high
sampling frequency because a battery drain was not detected was proven as premature,
since it did not anticipate possible performance issues. Consequently, changing the sampling
frequency would require fine-tuning the parameters of HRV calculation. The use of spectral
analysis led to an initial choice of 1024 samples for the buffer size, but according to the
DWT algorithm, the number of frequency decompositions and window overlapping can
be reevaluated to reduce processing time per segment of PPG data. Secondly, other
recommendation is to use multithreading in the Android application to parallelize the tasks
of acquisition, processing and communication among different cores of the computing unit.
Lastly, regarding the errors induced in the HRV calculation, not having implemented the
interpolation algorithm of the peak detector from Bhowmik et al. [80] was a main cause
of having long peak-to-peak times. Although the offline post-processing algorithms could
counteract the effects caused by the system instabilities, the inclusion of these algorithms in
the real-time algorithm is necessary to increase the quality and reliability of the calculated
HRV values.

After the post-processing, the calculated HRV data were within reasonable values for
all the participants, demonstrating that the system is suitable to calculate this type of
signals under the defined conditions. The validation can be done in new studies that seek to
compare peak detector accuracy between the designed solution and a gold standard, which
could be taken from other wearable systems with proprietary built-in peak-to-peak interval
calculation (such as in Garmin or Polar smartwatches). Recalling that these options are
proprietary that do not allow other applications to use these data in external applications,
which make them inconvenient for physiological computing systems.

The metrics chosen to compare the HRV between baseline and intervention produced
data that were aligned with the hypothesis of the use-case scenario of the artifact. The
initial assumption that slow-breathing maximizes changes in HRV could be seen in the
boxplots in the Figure 4.15. However, the differences were not sufficient to be considered
statistically significant. One of the reasons could have been the insufficient collected data,
both from the number of participants and the instability issues that caused the system
to crash. Further studies with more observations would allow to draw more definitive
conclusions.
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5.4 Considerations about Wearables and Virtual Reality for
Mental Health

The wearable devices with physiological measurements use proprietary software, which
impedes the access to raw data and hence it cannot be used to transmit information to
external applications. For this reason, the artifact presents important contribution in
democratizing the use of this data on broader type of solutions, such as in the case of mental
health. This restriction to the data makes it more difficult to validate the effectiveness
of these solutions in measuring physiological metrics, and some studies have reported the
existing concerns with wearable manufacturers that do not invest enough on research to
provide reliable technology [24].

VR technology has become more likely to assist the therapies for mental health
treatments because it is more portable and affordable for consumers than never before.
The fact that VR elicits higher engagement, user acceptance and uses realistic
environments allow safe assessment of dangerous situations. For instance, exposure
therapy for treating fear of heights is now possible without putting the user at a
life-threatening risk. The use of CalmPlace in the artifact was just one example of the
type of interventions for anxiety management, but the whole physiological computing
system can be adaptable to practically any VR application that is developed in the Unity
game engine. It implies that physiological data can be used in the increasing number of
technological solutions for health that are being developed in research and industry. In
spite of the diversity of types of VR devices, mobile VR has been giving universal access
to the people to immersive technology, encouraging the development of more digital
solutions to provide global, cost-effective and evidence-based services aimed at improving
mental health.

Furthermore, the design of biofeedback systems for mental health should rely more
on existing hardware, testing its feasibility on medical settings instead of designing new
physiological sensors that will have to pass through safety approvals. The frequent release
of electronic devices for VR and wearable health monitors are considered a likely path to
make easier the acquisition of physiological signals for VR-based biofeedback tools.

Finally, in the same way this thesis involves the work from a local company that uses
VR for health, it is recommended that future related projects strive for the creation of
alliances between healthcare, research, and commercial sectors. When this condition is
fulfilled, a big gap in the field of technology-based medical applications might be reduced,
because the digital solutions resulting from this partnerships would be designed for use
in real-life settings, evidence-based, and adapted to socio-cultural aspects of the target
populations who urge to receive cost-effective solutions for mental health [7].

5.5 Limitations of the Study
From the research protocol there are some details to highlight. First, when explaining the
experiment intervention, the participants were told to follow the specific frequency of the
guiding object, but they did not receive instructions about the deepness of breath. Through
observation, it was detected that only some participants were taking deep breaths, whereas
others were breathing with the deepness of a spontaneous respiration cycle. This might
have affected the homogeneity of the HRV data that was collected under both conditions
and needs to be considered in further research. In addition, the process to put the wearable
device worn on the participant’s wrist differed among participants, generating different
signal-to-noise ratio of the heart rate signal. The effect was evident especially due to
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inclusion of components in low-frequency band, which could be caused by movements of
the sensor on the wrist. Thirdly, a protocol to define an ideal baseline state should be
planned, for instance, letting the user rest for a specific amount of time before the data
collection starts.

The HRV calculation was dependent on the respiration but an adequate respiratory-
sinus arrhythmia analysis could not be calculated during the experiment because the real
respiratory signal could not be measured from the participants. The second part of the
experiment supposed that the user was following the breathing pattern correctly, and since
any volunteer reported difficulties in the post-experiment questionnaire, this assumption
was used during the inferential data analysis.

Despite the mentioned restrictions, the internal validity of the project was not affected
because the main research question was intended to validate technical feasibility of
construction and was not framed as an evaluation from the psychophysiological point of
view, thus permitting certain level of flexibility to make assumptions that facilitated the
experiment. Conversely, the external validity which explains to what extent the study can
be generalized outside the study sample [85], is affected because the sample size was very
small to draw definitive conclusions about the changes between normal and slow-paced
breathing. Since the system operated during different times for each participant, the
collected sample sizes are different among participants and the reliability of the results
cannot be assured.

5.6 Future Work
The current work aimed at designing and conducting an evaluation of the physiological
computing architecture as a whole entity, yet more research is encouraged from the
technical and medical standpoints. From the technical side, further evaluations could
be aimed at evaluating individual stages of the deployed architecture to enhance its
robustness and stability. For instance, assessing accuracy of the peak detector, impact of
the real-time HRV calculation in packet loss, validation of HRV features able to properly
discriminate slow-paced breathing, visual cues in the virtual environment that could elicit
higher perceived relaxation states in the users; and response of the adaptation logic which
was already implemented, but not assessed, in the current artifact. From the medical
perspective, as stated in the fundamentals of physiological computing, the final goal is to
use psychophysiological inference to provide computational systems with awareness of the
user. Therefore, the future work should be also aimed at validating the whole biocybernetic
loop under clinical conditions. In order to prevent ethical and legal consequences, the
future studies that use this system for medical validation should seek for approval from
a regional ethical committee, while providing adequate informed consent that follow the
data protection rules. Additionally, the evaluation of ethical aspects regarding the use of
self-guided therapies is necessary to provide evidence-based solutions.

A short-term study might replicate the use case of slow-breathing exercises at 0.1Hz
solving the aforementioned methodological limitations. Considering a more representative
sample of volunteers, and calculating other temporal and frequency features from the HRV
signal such as described by Shaffer et al. [38], which could lead to statistically significant
results. In addition, these features could be used to develop machine learning algorithms
to build a model that detect the two states normal breathing and slow-breathing from data
captured with wearable smartwatches.
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5.7 Conclusion
The main research question explored in the thesis was:

To what extent can a physiological computing system be deployed only using wearable
smartwatches and mobile virtual reality, to support mental health interventions with
slow-paced breathing relaxation exercises and heart rate variability analysis?

The results obtained from the project confirm the feasibility of construction of a
physiological computing system only using mobile devices. However, the early evaluation
also unveiled some technical and methodological elements to be considered before further
implementation on mental health projects.

Positive aspects from the construction of the physiological computing system are that
it proved that wearable and immersive technology is ready to provide customized solutions
for different areas. In this case, such as recommended by the World Health Organization,
mental health could leverage from the technology to support scalability of mental health
interventions in communities that lack these services. In order to accomplish this goal,
projects that put together research, healthcare and industry fields are needed to tackle the
problem from all the perspectives. This type of alliances encourages the design of systems
that consider the feasibility of the self-guided therapies keeping in mind effectiveness
assessment, medical pertinence, user-experience, and a way in which the technology can
be easily spread out throughout targeted populations. Moreover, these digital solutions
resulting of these partnerships should evaluate and rely on existing VR and wearable
devices to speed up the process of medical validation, instead of focusing on the design of
more electronic devices for this purpose.

Some elements of the physiological computing system still require improvement. The
main pitfall was related with technical instabilities, mainly due to a high computational
demand caused by the real-time HRV calculation. Moreover, the chosen use-case scenario
was sufficient to build the technical architecture from end-to-end, but future evaluation
needs to overcome the described methodological limitations to try to achieve statistically
significant results analyzing HRV in normal and slow-paced breathing.

The answers for secondary research questions are summarized as follows:

1. What is a feasible technical architecture of a physiological computing system fully
integrated with mobile VR and wearable sensors?

The feasible technical architecture was designed and implemented based on the set of
requirements and specific use-case described in the section 3.4. Leading to three
interconnected software applications that contained the five-layer generic model of
physiological computing, and thoroughly described in the section 4.1.

2. How can HRV be calculated in real-time from the heart rate signal to estimate the
user performance in a self-guided slow-paced breathing exercise?

A peak detector was implemented in the architecture based on previous technical
papers, described in the section 4.1.2. It permitted the real-time estimation of features
from the HRV signal, enriching the amount of information that can be put into the
computational systems to cause an automatic adaptation, according to the biocybernetic
loop of physiological computing. Ultimately aligned with the goal of offering systems for
self-guided mental health interventions.
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3. What effects in HRV are detectable with the mobile physiological system during guided
slow-paced breathing exercises?

Although the physiological computing system could detect changes in HRV between
normal and slow-paced breathing, this difference was not statistically significant for three
different metrics of dispersion analyzed (standard deviation, RMSSD, and coefficient of
variation). Improvements in the experiment protocol and overcoming the technical
instabilities are suggested before collecting more data to validate this assumption. These
statistical results did not affect the design and development of the final technical
architecture.
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Appendix A

Template for Informed Consent

Name of the student: Luis Eduardo Vélez Quintero
Supervisor: Panagiotis Papapetrou, PhD, Professor, DSV, Stockholm University

Participant Number: _

Informed Consent

The study you are requested to participate is part of a master’s thesis in Health
Informatics. The purpose is to identify whether smartwatches can identify changes in
heart functioning caused by different breathing exercises guided in virtual reality. The
participation in the study is entirely voluntary. If you choose to participate, you will be
asked to use a relaxation application in a virtual reality headset while a smartwatch collects
heart rate information from your wrist. In the second part of the experiment, you will be
asked to synch your breathing frequency with a visual cue that will appears in the virtual
environment. At the end, you are asked to fill out a form about the experience. The total
duration of the experiment is maximum 20 minutes. The study is completely anonymous,
and the aggregated data will be only used for academic purposes.

There are no known risks for you participating in the study. However, some people
might experience side effects such as dizziness while using the virtual reality system. In
any case, remember that you have the right to withdraw completely from the study at any
time.

Your signature below indicates that you have decided to participate in this study and
you have read and understood all the information provided above.

Name:

Signature:

Date:
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Appendix B

Post-Experiment Questionnaire

Questionnaire originally administered using a digital version in Google Forms.

Name of the student: Luis Eduardo Vélez Quintero
Supervisor: Panagiotis Papapetrou, PhD, Professor, DSV, Stockholm University
Email: luva3178@student.su.se

Questionnaire Experiment Virtual Reality – Smartwatch
Please respond the following questions regarding the relaxation experiment using Virtual Reality

and Smartwatches. Thank you for your participation.

Participant Number: [Used for internal match of datasets]
Age:
Gender: Male. Female. Prefer not to say.

Before the experiment, did you have previous experience using virtual reality?
Yes. No. Not sure.

During the past five years, have you suffered from any cardiovascular disease?
Yes. No. Not sure.

Questions with Likert Scale: [Strongly disagree, disagree, neutral, agree, strongly agree]

In the FIRST part of the session (before synchronizing the respiration with the blue object):

I clearly understood what I had to do.
I was completely concentrated on the virtual environment, blocking external triggers.
This was the most relaxing part of the session.

In the SECOND part of the session (while you were synchronizing the respiration with the blue
object):

I clearly understood what I had to do.
It was easy to follow the blue object that guided the respiration.
This was the most relaxing part of the session.

If you had any inconvenience during the experiment (dizziness, uncomfortable devices, etc.). Please
describe it here: [Open answer]
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